1
|
Two Distinct Superoxidase Dismutases (SOD) Secreted by the Helminth Parasite Fasciola hepatica Play Roles in Defence against Metabolic and Host Immune Cell-Derived Reactive Oxygen Species (ROS) during Growth and Development. Antioxidants (Basel) 2022; 11:antiox11101968. [PMID: 36290692 PMCID: PMC9598480 DOI: 10.3390/antiox11101968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The antioxidant superoxide dismutase (SOD) catalyses the dismutation of superoxide, a dangerous oxygen free radical, into hydrogen peroxide and molecular oxygen. Superoxide generation during the oxidative burst of the innate immune system is considered a key component of the host defence against invading pathogens. We demonstrate the presence and differential expression of two SODs in Fasciola hepatica, a leaderless cytosolic (FhSOD1) and an extracellular (FhSOD3) form containing a secretory signal peptide, suggesting that the parasites exploit these enzymes in distinct ways to counteract reactive oxygen species (ROS) produced by cellular metabolism and immune defences. Both enzymes are highly expressed by the infective newly excysted juvenile (NEJ) stages and are found in abundance in their excretory–secretory products (ES), but only FhSOD1 is present in adult ES, suggesting that the antioxidants have different functions and pathways of secretion, and are under separate temporal expression control during the migration, growth, and development of the parasite. Functionally, the recombinant FhSOD1 and FhSOD3 exhibit similar activity against superoxide to their mammalian counterparts. Confocal immuno-localisation studies demonstrated the presence of FhSOD1 and FhSOD3 on the NEJ tegument and parenchyma, supporting our suggestion that these enzymes are secreted during host invasion to protect the parasites from the harmful oxidative bursts produced by the activated innate immune response. By producing superoxide enzymatically in vitro, we were able to demonstrate robust killing of F. hepatica NEJ within 24 h post-excystment, and that the lethal effect of ROS was nullified with the addition of SOD and catalase (the antioxidant enzyme responsible for the dismutation of hydrogen peroxide, a by-product of the SOD reaction). This study further elucidates the mechanism by which F. hepatica protects against ROS derived from cellular metabolism and how the parasite could mitigate damage caused by the host’s immune response to benefit its survival.
Collapse
|
2
|
Lalrinkima H, Jacob SS, Raina OK, Chandra D, Lalawmpuii K, Lalchhandama C, Behera P, Tolenkhomba TC. Superoxide dismutase inhibits cytotoxic killing of Fasciola gigantica newly excysted juveniles expressed by sheep invitro. Exp Parasitol 2022; 242:108369. [PMID: 36058254 DOI: 10.1016/j.exppara.2022.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/04/2022]
Abstract
Fasciola gigantica faces a series of threats from various free radicals produced by the host immune system during its invasion through the abdominal cavity and establishment in the bile duct of ruminants, limiting the fluke viability. The role of the superoxide radical produced by Muzaffarnagari sheep immune effector cells against F. gigantica newly excysted juveniles (NEJs) is highlighted in this study, as is the critical role of superoxide dismutase enzyme (SOD) in dismutation of superoxide radicals derived from host immune effector cells in vitro. Three concentrations of the ovine immune effector cells viz. 2.5, 5, and 10 × 106 cells were tested for their ability to induced cytotoxic killing of the parasite. All the three cell concentrations caused significant (p < 0.01) cytotoxic killing of NEJs in comparison to the control groups. Also, reduction of the immune effector cell concentration directly correlates with the NEJs killing. Attachment of immune effector cells to the parasite tegument in the presence of anti-F. gigantica antibodies was found to be critical in inducing NEJs killing via antibody-dependent cell-mediated cytotoxicity (ADCC). However, the addition of SOD greatly inhibits cytotoxic killing of NEJs, demonstrating the importance of SOD enzyme in fluke survival and parasite evasion of the host immunity. Thus, F. gigantica SOD warrants a promising candidate for immunoprophylactic studies in ruminants against the tropical liver fluke.
Collapse
Affiliation(s)
- H Lalrinkima
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India; ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - S S Jacob
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India; ICAR-NIVEDI, Bengaluru, Karnataka, India
| | - O K Raina
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - D Chandra
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K Lalawmpuii
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - C Lalchhandama
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - P Behera
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - T C Tolenkhomba
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| |
Collapse
|
3
|
Fasciolosis in India: An overview. Exp Parasitol 2021; 222:108066. [PMID: 33444570 DOI: 10.1016/j.exppara.2021.108066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/01/2023]
Abstract
Fasciolosis in ruminants is a relentless constraint in the livestock industry across the world. Immuno-prophylactic vaccines against fasciolosis may not come up in near future, rendering the control of this scourge with chemotherapy and snail population control. With the alarming threats of anti-fasciolid drug resistance reported from certain parts of the world; the control of fasciolosis should be directed towards the development of rapid and reliable diagnostic tools to execute the specific and discrete treatment. Understanding the epidemiology of Fasciola, its genomics and proteomics, host-parasite interplay, and advances in drug design research is vital for improving animal health that would ultimately succour to meet the ever-increasing demand for food. Due to possible differences in immune response depending on the species of the host and parasite, immuno-prophylactic studies in India should aim at achieving protective efficacy in buffalo against F. gigantica as workers from other countries concentrate primarily on vaccination of cattle and sheep against F. hepatica. This manuscript focused on the research that has been carried out in India for understanding the epidemiology, genetic diversity, immuno-diagnosis, and possible control measure in terms of immuno-prophylaxis and drug designing against tropical fasciolosis caused by Fasciola gigantica.
Collapse
|
4
|
Purification, biochemical characterization and DNA protection against oxidative damage of a novel recombinant superoxide dismutase from psychrophilic bacterium Halomonas sp. ANT108. Protein Expr Purif 2020; 173:105661. [DOI: 10.1016/j.pep.2020.105661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
|
5
|
Anandanarayanan A, Raina OK, Lalrinkima H, Rialch A, Sankar M, Varghese A. RNA interference in Fasciola gigantica: Establishing and optimization of experimental RNAi in the newly excysted juveniles of the fluke. PLoS Negl Trop Dis 2017; 11:e0006109. [PMID: 29232690 PMCID: PMC5749881 DOI: 10.1371/journal.pntd.0006109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/02/2018] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Fasciolosis caused by Fasciola gigantica is a neglected tropical disease but a constraint on the growth and productivity of cattle, buffaloes and sheep in the tropical countries of Asia and Africa. Resistance to commonly used anthelmintics in Fasciola has increased the need to search for alternative therapeutic targets. RNA interference is the current tool of choice in the search for such targets in Fasciola. The susceptibility of juvenile Fasciola hepatica to double stranded (ds) RNA induced RNAi has been established but in F. gigantica a single preliminary report on RNAi induced mRNA transcript knockdown is available. Here we optimized conditions for RNAi in the liver fluke F.gigantica targeting six genes including superoxide dismutase (SOD), σ class of glutathione-s-transferase (GST), cathepsin (Cat) L1-D, Cat B1, Cat B2 and Cat B3 that showed robust transcriptional silencing of the targets following exposure of the newly excysted juveniles (NEJs) to long (170–223 nt) dsRNA. Knockdown was shown to be concentration dependent with significant mRNA transcript suppression occurring at 5 ng / μl that showed further suppression with the increase in the dsRNA concentration. The dsRNA induced persistent silencing of the mRNA transcript of SOD and σGST up to 15 days of observation. Delivery of the long dsRNA and siRNA to the newly excysted juveniles by soaking method was found to be efficient by tracking the uptake and diffusion of Cy3 labelled siRNA and long dsRNA in the flukes. Off-target effects of dsRNA trigger on some of the non-target genes were detected in the present investigation on RNAi in F. gigantica. The dsRNA induced superoxide dismutase protein suppression while impact of RNAi on other target proteins was not studied. There is no in vitro culture system for prolonged survival of the F. gigantica and in the present study in vitro maintenance of the NEJs is reported for a period of 3 weeks. The present study is the first attempt on optimization of RNAi protocols in F. gigantica where long dsRNA allowed for an efficient and persistent gene silencing, opening prospects for functional validation of putative vaccine and therapeutic targets in this neglected parasite. RNA interference (RNAi) is a powerful method for selectively silencing genes for the validation of potential targets for drug and vaccine development. The susceptibility of juvenile Fasciola hepatica to double stranded (ds) RNA induced RNAi has been established but in F. gigantica a single report of a preliminary study on knockdown of a single gene transcript exists. In the absence of other tools of reverse genetics, RNAi occupies a centre stage in the validation of gene functions in Fasciola species. This study focuses on F.gigantica, an economically important veterinary parasite with a zoonotic potential. Here in this study, we optimized a set of simple methods for triggering RNAi in the F. gigantica juvenile liver fluke, which shows that a robust transcriptional suppression can be readily achieved across all targets tested and with protein suppression confirmed in one of the targets. These studies also highlight the need for developing an in vitro maintenance system for the fluke for validation of the RNAi protocols. These findings are important for researchers aiming to employ RNAi in investigations of liver fluke biology and target validation.
Collapse
Affiliation(s)
- Arun Anandanarayanan
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP-India
| | - Opinder Krishen Raina
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP-India
- * E-mail:
| | - Hniang Lalrinkima
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP-India
| | - Ajayta Rialch
- Department of Veterinary Parasitology, Dr GC Negi College of Veterinary and Animal Sciences, CSK HPKV, Palampur, HP, India
| | - Muthu Sankar
- Division of Temperate Animal Husbandry, ICAR-Indian Veterinary Research Institute, Mukteshwar, UK-India
| | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| |
Collapse
|
6
|
Cytosolic superoxide dismutase can provide protection against Fasciola gigantica. Acta Trop 2016; 162:75-82. [PMID: 27338185 DOI: 10.1016/j.actatropica.2016.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/19/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
Abstract
Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries.
Collapse
|