1
|
Pillay CS, John N, Barry CJ, Mthethwa LMDC, Rohwer JM. Atypical network topologies enhance the reductive capacity of pathogen thiol antioxidant defense networks. Redox Biol 2023; 65:102802. [PMID: 37423162 PMCID: PMC10338151 DOI: 10.1016/j.redox.2023.102802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Infectious diseases are a significant health burden for developing countries, particularly with the rise of multidrug resistance. There is an urgent need to elucidate the factors underlying the persistence of pathogens such as Mycobacterium tuberculosis, Plasmodium falciparum and Trypanosoma brucei. In contrast to host cells, these pathogens traverse multiple and varied redox environments during their infectious cycles, including exposure to high levels of host-derived reactive oxygen species. Pathogen antioxidant defenses such as the peroxiredoxin and thioredoxin systems play critical roles in the redox stress tolerance of these cells. However, many of the kinetic rate constants obtained for the pathogen peroxiredoxins are broadly similar to their mammalian homologs and therefore, their contributions to the redox tolerances within these cells are enigmatic. Using graph theoretical analysis, we show that compared to a canonical Escherichia coli redoxin network, pathogen redoxin networks contain unique network connections (motifs) between their thioredoxins and peroxiredoxins. Analysis of these motifs reveals that they increase the hydroperoxide reduction capacity of these networks and, in response to an oxidative insult, can distribute fluxes into specific thioredoxin-dependent pathways. Our results emphasize that the high oxidative stress tolerance of these pathogens depends on both the kinetic parameters for hydroperoxide reduction and the connectivity within their thioredoxin/peroxiredoxin systems.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa.
| | - Nolyn John
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Christopher J Barry
- Laboratory for Molecular Systems Biology, Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| | | | - Johann M Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
2
|
Markus MB. Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Trop Med Infect Dis 2023; 8:278. [PMID: 37235326 PMCID: PMC10223033 DOI: 10.3390/tropicalmed8050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enhanced therapeutic efficacy achieved in treating Plasmodium vivax malaria with an 8-aminoquinoline (8-AQ) drug such as primaquine (PQ) together with a partner drug such as chloroquine (CQ) is usually explained as CQ inhibiting asexual parasites in the bloodstream and PQ acting against liver stages. However, PQ's contribution, if any, to inactivating non-circulating, extra-hepatic asexual forms, which make up the bulk of the parasite biomass in chronic P. vivax infections, remains unclear. In this opinion article, I suggest that, considering its newly described mode of action, PQ might be doing something of which we are currently unaware.
Collapse
Affiliation(s)
- Miles B. Markus
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of Witwatersrand, Johannesburg 2001, South Africa
| |
Collapse
|
3
|
Lang L, Wolf AC, Riedel M, Thibol L, Geissel F, Feld K, Zimmermann J, Morgan B, Manolikakes G, Deponte M. Substrate Promiscuity and Hyperoxidation Susceptibility as Potential Driving Forces for the Co-evolution of Prx5-Type and Prx6-Type 1-Cys Peroxiredoxin Mechanisms. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Lukas Lang
- Faculty of Chemistry, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ann-Cathrin Wolf
- Faculty of Chemistry, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Mareike Riedel
- Faculty of Chemistry, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Lea Thibol
- Faculty of Chemistry, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Fabian Geissel
- Faculty of Chemistry, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Kristina Feld
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany
| | - Georg Manolikakes
- Faculty of Chemistry, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Marcel Deponte
- Faculty of Chemistry, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Haag M, Kehrer J, Sanchez CP, Deponte M, Lanzer M. Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biol 2022; 58:102536. [DOI: 10.1016/j.redox.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
5
|
Venancio Brochi JC, Pereira LM, Yatsuda AP. Extracellular H 2O 2, peroxiredoxin, and glutathione reductase alter Neospora caninum invasion and proliferation in Vero cells. Exp Parasitol 2022; 242:108381. [PMID: 36122700 DOI: 10.1016/j.exppara.2022.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
Neospora caninum is a protozoan member of the Apicomplexa phylum and is closely connected with abortion in cattle. The development of the parasite in host cells is characterized by the active secretion of proteins, allied to the tight control of the redox status. In this sense, elucidating the mechanisms related to the role of the redox agents and enzymes during the invasion and proliferation of N. caninum may contribute to developing novel forms of neosporosis control. In this study we verified the effects of the recombinant forms of N. caninum glutathione reductase (rNcGR) and thioredoxin-dependent peroxide reductase (rNcPrx), as well as H2O2 in the tachyzoite invasion and proliferation. rNcPrx interfered in the N. caninum invasion in a redox state manner. Oxidized rNcPrx inhibited the N. caninum invasion and proliferation with no toxic effects observed in Vero cells. In contrast, lower concentrations of H2O2 (10 μM) stimulated the N. caninum invasion, which was reverted in higher doses (>100 μM). H2O2 inhibited the parasite proliferation in lower concentrations than cytotoxicity in host cells, resulting in a positive selectivity index (1.8). Besides, rNcPrx (reduced and non-reduced) and rNcGR inhibited the parasite proliferation without affecting the host cell. Our results indicate the connection between the N. caninum development and the redox state, contributing to the elucidation of parasite propagation and control mechanisms.
Collapse
Affiliation(s)
- Jade Cabestre Venancio Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Egwu CO, Pério P, Augereau JM, Tsamesidis I, Benoit-Vical F, Reybier K. Resistance to artemisinin in falciparum malaria parasites: A redox-mediated phenomenon. Free Radic Biol Med 2022; 179:317-327. [PMID: 34416340 DOI: 10.1016/j.freeradbiomed.2021.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
Malaria remains a major public health disease due to its high yearly mortality and morbidity. Resistance to the gold standard drug, artemisinin, is worrisome and needs better understanding in order to be overcome. In this work, we sought to study whether redox processes are involved in artemisinin resistance. As artemisinin is known to act among others via production of reactive species, we first compared the production of reactive oxygen species and concomitant protein oxidation in artemisinin-sensitive and artemisinin-resistant parasites when treated with artemisinin. The results undoubtedly demonstrated, using different original methods, that the level of ROS, including superoxide production, and oxidized protein were lower in the resistant strain. Interestingly, the major in-between strain difference was reported at the earlier ring stages, which are the forms able to enter in a quiescence state according to the ART resistance phenomenon. Moreover, we demonstrated a better homeostasis regulation in relation with higher expression of antioxidants in the artemisinin-resistant parasites than their sensitive counterparts after artemisinin exposure, notably, superoxide dismutase and the glutathione (GSH) system. These findings enrich the body of knowledges about the multifaceted mechanism of artemisinin resistance and will help in the design and development of newer antimalarials strategies active against resistant parasites.
Collapse
Affiliation(s)
- Chinedu O Egwu
- PharmaDev, UMR 152, Université de Toulouse, IRD, UPS, Toulouse, 31400, France; Medical Biochemistry, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Abakaliki, Ebonyi State, Nigeria; LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, Inserm ERL 1289, New Antimalarial Molecules and Pharmacological Approaches, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France
| | - Pierre Pério
- PharmaDev, UMR 152, Université de Toulouse, IRD, UPS, Toulouse, 31400, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, Inserm ERL 1289, New Antimalarial Molecules and Pharmacological Approaches, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France
| | - Ioannis Tsamesidis
- PharmaDev, UMR 152, Université de Toulouse, IRD, UPS, Toulouse, 31400, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, Inserm ERL 1289, New Antimalarial Molecules and Pharmacological Approaches, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, France.
| | - Karine Reybier
- PharmaDev, UMR 152, Université de Toulouse, IRD, UPS, Toulouse, 31400, France.
| |
Collapse
|
7
|
Schumann R, Bischoff E, Klaus S, Möhring S, Flock J, Keller S, Remans K, Ganter M, Deponte M. Protein abundance and folding rather than the redox state of Kelch13 determine the artemisinin susceptibility of Plasmodium falciparum. Redox Biol 2021; 48:102177. [PMID: 34773836 PMCID: PMC8600086 DOI: 10.1016/j.redox.2021.102177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 12/30/2022] Open
Abstract
Decreased susceptibilities of the human malaria parasite Plasmodium falciparum towards the endoperoxide antimalarial artemisinin are linked to mutations of residue C580 of PfKelch13, a homologue of the redox sensor Keap1 and other vertebrate BTB-Kelch proteins. Here, we addressed whether mutations alter the artemisinin susceptibility by modifying the redox properties of PfKelch13 or by compromising its native fold or abundance. Using selection-linked integration and the glmS ribozyme, efficient down-regulation of PfKelch13 resulted in ring-stage survival rates around 40%. While the loss of the thiol group of C469 or of the potential disulfide bond between residues C580 and C532 had no effect on the artemisinin susceptibility, the thiol group of C473 could not be replaced. Furthermore, we detected two different forms of PfKelch13 with distinct electrophoretic mobilities around 85 and 95 kDa, suggesting an unidentified post-translational modification. We also established a protocol for the production of recombinant PfKelch13 and produced an antibody against the protein. Recombinant PfKelch13 adopted alternative oligomeric states and only two of its seven cysteine residues, C469 and C473, reacted with Ellman's reagent. While common field mutations resulted in misfolded and completely insoluble recombinant PfKelch13, cysteine-to-serine replacements had no effect on the solubility except for residue C473. In summary, in contrast to residues C469, C532, and C580, the surface-exposed thiol group of residue C473 appears to be essential. However, not the redox properties but impaired folding of PfKelch13, resulting in a decreased PfKelch13 abundance, alters the artemisinin susceptibility and is the central parameter for mutant selection.
Collapse
Affiliation(s)
- Robin Schumann
- Faculty of Chemistry, Comparative Biochemistry, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Eileen Bischoff
- Faculty of Chemistry, Comparative Biochemistry, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Severina Klaus
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, D-69120, Heidelberg, Germany
| | - Sophie Möhring
- Faculty of Chemistry, Comparative Biochemistry, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julia Flock
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), D-69117, Heidelberg, Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern, D-67663, Kaiserslautern, Germany; Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Kim Remans
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), D-69117, Heidelberg, Germany
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, D-69120, Heidelberg, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
8
|
Shi X, Wei M, Xu Z, Liu Y, Zhang M, Lv L, Wang Q. Vitamin C Inhibits Blood-Stage Plasmodium Parasites via Oxidative Stress. Front Cell Dev Biol 2021; 9:639944. [PMID: 34046404 PMCID: PMC8144511 DOI: 10.3389/fcell.2021.639944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
During the Plasmodium erythrocytic cycle, glucose is taken up by glucose transporters (GLUTs) in red blood cells (RBCs) and supplied to parasites via the Plasmodium hexose transporter. Here, we demonstrate that the glucose uptake pathway in infected RBCs (iRBCs) can be hijacked by vitamin C (Vc). GLUTs preferentially transport the oxidized form of Vc, which is subsequently reduced in the cytosol. Vc, which is expected to burden the intracellular reducing capacity, inhibits Plasmodium berghei and Plasmodium falciparum growth. Vc uptake is drastically increased in iRBCs, with a large proportion entering parasites. Increased absorption of Vc causes accumulation of reactive oxygen species, reduced ATP production, and elevated eryptosis in iRBCs and apoptosis in parasites. The level of oxidative stress induced by Vc is significantly higher in iRBCs than uninfected RBCs, not seen in chloroquine or artemisinin-treated iRBCs, and effective in inhibiting chloroquine or artemisinin-resistant parasites. These findings provide important insights into the drug sensitivity of Plasmodium.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Meng Wei
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Zihao Xu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Ying Liu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Mujia Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Li Lv
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Wezena CA, Alisch R, Golzmann A, Liedgens L, Staudacher V, Pradel G, Deponte M. The cytosolic glyoxalases of Plasmodium falciparum are dispensable during asexual blood-stage development. MICROBIAL CELL 2017; 5:32-41. [PMID: 29354648 PMCID: PMC5772037 DOI: 10.15698/mic2018.01.608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The enzymes glyoxalase 1 and 2 (Glo1 and Glo2) are found in most eukaryotes and catalyze the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Four glyoxalases are encoded in the genome of the malaria parasite Plasmodium falciparum, the cytosolic enzymes PfGlo1 and PfcGlo2, the apicoplast enzyme PftGlo2, and an inactive Glo1-like protein that also carries an apicoplast-targeting sequence. Inhibition or knockout of the Plasmodium glyoxalases was hypothesized to lead to an accumulation of 2-oxoaldehydes and advanced glycation end-products (AGE) in the host-parasite unit and to result in parasite death. Here, we generated clonal P. falciparum strain 3D7 knockout lines for PFGLO1 and PFcGLO2 using the CRISPR-Cas9 system. Although 3D7Δglo1 knockout clones had an increased susceptibility to external glyoxal, all 3D7Δglo1 and 3D7Δcglo2 knockout lines were viable and showed no significant growth phenotype under standard growth conditions. Furthermore, the lack of PfcGlo2, but not PfGlo1, increased gametocyte commitment in the knockout lines. In summary, PfGlo1 and PfcGlo2 are dispensable during asexual blood-stage development while the loss of PfcGlo2 may induce the formation of transmissible gametocytes. These combined data show that PfGlo1 and PfcGlo2 are most likely not suited as targets for selective drug development.
Collapse
Affiliation(s)
- Cletus A Wezena
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Romy Alisch
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Alexandra Golzmann
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Linda Liedgens
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Verena Staudacher
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Department of Chemistry/Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, D-52074 Aachen, Germany
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.,Department of Chemistry/Biochemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Knockout of the peroxiredoxin 5 homologue PFAOP does not affect the artemisinin susceptibility of Plasmodium falciparum. Sci Rep 2017; 7:4410. [PMID: 28667301 PMCID: PMC5493673 DOI: 10.1038/s41598-017-04277-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
Artemisinins are the current mainstay of malaria chemotherapy. Their exact mode of action is an ongoing matter of debate, and several factors have recently been reported to affect an early stage of artemisinin resistance of the most important human malaria parasite Plasmodium falciparum. Here, we identified a locus on chromosome 7 that affects the artemisinin susceptibility of P. falciparum in a quantitative trait locus analysis of a genetic cross between strains 7G8 and GB4. This locus includes the peroxiredoxin gene PFAOP. However, steady-state kinetic data with recombinant PfAOP do not support a direct interaction between this peroxidase and the endoperoxide artemisinin. Furthermore, neither the overexpression nor the deletion of the encoding gene affected the IC50 values for artemisinin or the oxidants diamide and tert-butyl hydroperoxide. Thus, PfAOP is dispensable for blood stage parasite survival, and the correlation between the artemisinin susceptibility and chromosome 7 is probably based on another gene within the identified locus.
Collapse
|