1
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Investigation of comorbidities in dogs with leishmaniosis due to Leishmania infantum. Vet Parasitol Reg Stud Reports 2023; 39:100844. [PMID: 36878629 DOI: 10.1016/j.vprsr.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 01/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
In endemic areas, dogs with leishmaniosis due to Leishmania infantum frequently have comorbidities, including mostly neoplastic, infectious, and parasitic diseases. The aim of this study was to compare the prevalence of comorbidities among dogs that are not infected by L. infantum, dogs that are infected but do not present leishmaniosis, and dogs with leishmaniosis, and to examine if certain comorbidities are independent risk factors for the infection by L. infantum and/or for the development of canine leishmaniosis (CanL). A total of 111 dogs, older than 1-year and non-vaccinated against CanL, were allocated into three groups: group A (n = 18) included dogs that were not infected by L. infantum, group B (n = 52) included dogs that were infected by L. infantum but did not present CanL, and group C (n = 41) included dogs with CanL. Signalment and historical data were obtained using a structured questionnaire. Laboratory examinations included complete blood count, serum biochemistry, urinalysis, fecal parasitology, modified Knott's test, microscopic examination of capillary blood, buffy coat, lymph node, bone marrow and conjunctival smears, qualitative serology for Dirofilaria immitis, Anaplasma phagocytophilum/A. platys, Borrelia burgdorferi and E. canis, IFAT for L. infantum, ELISA for Babesia spp. and Neospora caninum, and real-time PCR for L. infantum in bone marrow, skin biopsies and conjunctival swabs. A variety of comorbidities were found in all three groups. No independent risk factors for infection by L. infantum were found. On the contrary, among dogs infected by L. infantum, being a mongrel [odds ratio (OR): 11.2], not receiving prevention for dirofilariosis (OR: 26.5) and being seropositive to N. caninum (OR: 17.1) or to Babesia spp. (OR: 37.6), were independent risk factors for presenting CanL. Although no comorbidities influence the probability of canine infection by L. infantum, certain comorbidities may be precipitating factors for the transition from the subclinical infection by L. infantum to the overt CanL.
Collapse
|
3
|
Peroxisome Proliferator-Activated Receptor-Targeted Therapies: Challenges upon Infectious Diseases. Cells 2023; 12:cells12040650. [PMID: 36831317 PMCID: PMC9954612 DOI: 10.3390/cells12040650] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) α, β, and γ are nuclear receptors that orchestrate the transcriptional regulation of genes involved in a variety of biological responses, such as energy metabolism and homeostasis, regulation of inflammation, cellular development, and differentiation. The many roles played by the PPAR signaling pathways indicate that PPARs may be useful targets for various human diseases, including metabolic and inflammatory conditions and tumors. Accumulating evidence suggests that each PPAR plays prominent but different roles in viral, bacterial, and parasitic infectious disease development. In this review, we discuss recent PPAR research works that are focused on how PPARs control various infections and immune responses. In addition, we describe the current and potential therapeutic uses of PPAR agonists/antagonists in the context of infectious diseases. A more comprehensive understanding of the roles played by PPARs in terms of host-pathogen interactions will yield potential adjunctive personalized therapies employing PPAR-modulating agents.
Collapse
|
4
|
Yin C, Cai J, Gou Y, Li D, Tang H, Wang L, Liu H, Luo B. Dynamic changes in human THP-1-derived M1-to-M2 macrophage polarization during Thelazia callipaeda MIF induction. Front Immunol 2023; 13:1078880. [PMID: 36713445 PMCID: PMC9876561 DOI: 10.3389/fimmu.2022.1078880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Macrophages are innate immune cells with essential roles in the immune response during helminth infection. Particularly, the direction of macrophage polarization could contribute to pathogen trapping and killing as well as tissue repair and the resolution of type 2 inflammation. This study establishes that the recombinant protein of Thelazia callipaeda macrophage migration inhibitory factor (T.cp-MIF) induces THP-1-derived macrophages to undergo M1 to M2 type dynamic polarization, using the methods of flow cytometry, real-time quantitative PCR, differential transcriptomic analysis and western blot. Interestingly, there was an increase in protein and mRNA expression of M1-type proteins and cytokines after the use of PI3K inhibitors, suggesting that the polarization state tends to favor the M1 type after M2 type inhibition. In conclusion, the dynamic polarization mechanism of T.cp-MIF-induced human THP-1-derived macrophages from M1 to M2 type is related to the binding of TLR4. It can first affect the M1 type polarization of macrophages by activating its downstream NF-κB pathway. Activation of the PI3K/Akt pathway and inhibition of NF-κB phosphorylation affects the M2 type polarization of macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Liu
- *Correspondence: Hui Liu, ; Bo Luo,
| | - Bo Luo
- *Correspondence: Hui Liu, ; Bo Luo,
| |
Collapse
|
5
|
Fereig RM, Omar MA, Alsayeqh AF. Exploiting the Macrophage Production of IL-12 in Improvement of Vaccine Development against Toxoplasma gondii and Neospora caninum Infections. Vaccines (Basel) 2022; 10:vaccines10122082. [PMID: 36560492 PMCID: PMC9783364 DOI: 10.3390/vaccines10122082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Toxoplasmosis and neosporosis are major protozoan diseases of global distribution. Toxoplasma gondii is the cause of toxoplasmosis, which affects almost all warm-blooded animals, including humans, while Neospora caninum induces neosporosis in many animal species, especially cattle. The current defective situation with control measures is hindering all efforts to overcome the health hazards and economic losses of toxoplasmosis and neosporosis. Adequate understanding of host-parasite interactions and host strategies to combat such infections can be exploited in establishing potent control measures, including vaccine development. Macrophages are the first defense line of innate immunity, which is responsible for the successful elimination of T.gondii or N. caninum. This action is exerted via the immunoregulatory interleukin-12 (IL-12), which orchestrates the production of interferon gamma (IFN-γ) from various immune cells. Cellular immune response and IFN-γ production is the hallmark for successful vaccine candidates against both T. gondii and N. caninum. However, the discovery of potential vaccine candidates is a highly laborious, time-consuming and expensive procedure. In this review, we will try to exploit previous knowledge and our research experience to establish an efficient immunological approach for exploring potential vaccine candidates against T. gondii and N. caninum. Our previous studies on vaccine development against both T. gondii and N. caninum revealed a strong association between the successful and potential vaccine antigens and their ability to promote the macrophage secretion of IL-12 using a murine model. This phenomenon was emphasized using different recombinant antigens, parasites, and experimental approaches. Upon these data and research trials, IL-12 production from murine macrophages can be used as an initial predictor for judgment of vaccine efficacy before further evaluation in time-consuming and laborious in vivo experiments. However, more studies and research are required to conceptualize this immunological approach.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: (R.M.F.); (A.F.A.)
| | - Mosaab A. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (R.M.F.); (A.F.A.)
| |
Collapse
|
6
|
Sangphech N, Sillapachaiyaporn C, Nilkhet S, Chuchawankul S. Auricularia polytricha ethanol crude extract from sequential maceration induces lipid accumulation and inflammatory suppression in RAW264.7 macrophages. Food Funct 2021; 12:10563-10570. [PMID: 34571527 DOI: 10.1039/d0fo02574g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Auricularia polytricha (AP), an edible mushroom, is continuously being studied due to the medicinal properties. In this study, AP crude extracts from three sequential extraction, starting from hexane (APH), ethanol (APE) and water (APW), were examined for their anti-inflammatory activity and lipid accumulation property in macrophages. APE treatment was found to increase lipid droplet accumulation in both RAW264.7 and LPS-stimulated RAW264.7 cells in a dose dependent manner. Furthermore, nitric oxide production upon LPS stimulation was suppressed on APE pre-treatment. LC-MS analysis was performed to identify the potential bioactive compounds in APE. The PPARγ agonist, 15-Deoxy-Δ12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G), was uniquely presented in APE, which was previously described to bind with PPARγ and induces lipid uptake via the upregulation of Cd36. We found that pre-treatment with APE also showed an increase in Cd36 mRNA in RAW264.7 cells, indicating that 15d-PGJ2-G is the potential active compound found in AP. In conclusion, APE exhibited the induction of lipid uptake via CD36, resulting in lipid accumulation.
Collapse
Affiliation(s)
- Naunpun Sangphech
- Medical Technology, School of Allied Health Sciences, Walailak University, 222 Thaiburi, Thasala, Nakorn Si Thammarat, 80160, Thailand
| | - Chanin Sillapachaiyaporn
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Immunomodulation of Natural Products Research Group, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Cai J, Huang L, Tang H, Xu H, Wang L, Zheng M, Yu H, Liu H. Macrophage migration inhibitory factor of Thelazia callipaeda induces M2-like macrophage polarization through TLR4-mediated activation of the PI3K-Akt pathway. FASEB J 2021; 35:e21866. [PMID: 34416031 DOI: 10.1096/fj.202100676r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF), an immunoregulatory cytokine plays an important role in inflammation and the immune response, and has been described as having a potential role in immune evasion by parasites. Thelazia callipaeda, a vector-borne zoonotic eye worm with a broad host range, has been documented as an agent of ocular infection of thelaziosis. The ability of T. callipaeda to persist in an immunologically competent host has led to the suggestion that it has evolved specific measures to counter immune defenses. To date, whether the immune evasion of T. callipaeda is related to MIF and the possible related signaling pathway and molecular mechanism have remained unclear. In the present study, we examined the effect of T. callipaeda MIF (T. cp-MIF) on macrophages. We analyzed the antigenic epitopes of the candidate T. cp-MIF and found that it exhibited an ideal antigenic index. Morphology, Flow cytometry, and cytokine analysis showed that T. cp-MIF induced the dynamic polarization of THP-1 macrophages from the M1-like phenotype to the M2-like phenotype. The chemotaxis assay revealed an inhibitory effect of T. cp-MIF on THP-1 macrophages. Western blotting suggested that, compared to the control, THP-1 macrophages exposed to T. cp-MIF had higher TLR4 protein expression and the phosphatidylinositol 3'-kinase (PI3K) -Akt pathway activation. In conclusion, T. cp-MIF induces M2-like macrophage polarization through TLR4-mediated activation of the PI3K-Akt pathway, which might provide a basis for future research on how it affects the immune system of the host.
Collapse
Affiliation(s)
- Juan Cai
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Lin Huang
- Qiannan Medical College for Nationalities, Duyun, China
| | - Hongri Tang
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Hongling Xu
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Minghui Zheng
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Das S, Mukherjee S, Ali N. Super enhancer-mediated transcription of miR146a-5p drives M2 polarization during Leishmania donovani infection. PLoS Pathog 2021; 17:e1009343. [PMID: 33630975 PMCID: PMC7943006 DOI: 10.1371/journal.ppat.1009343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The outcome of Leishmania donovani infection depends upon the dynamic interchanges between M1 and M2 macrophages. Information of the involvement of microRNAs (miRNAs) and epigenetic modifiers in regulating macrophage plasticity during L. donovani infection is still elusive. Differential expression analysis of polarization-regulating miRNAs, revealed significant enrichment of miR146a-5p during Leishmania donovani infection. A sustained enrichment of miR146a-5p was observed in both infected bone marrow derived macrophages (BMDMs) and BALB/c mice organs. We found involvement of miR146a-5p in phagocytosis and survivability of parasites. Moreover, miR146a-5pgot enriched in interleukin 4- stimulated BMDMs, indicating its possible involvement in M2 polarization. Upon transfecting BMDMs with miRVANA anti-146a oligos, M2 markers (CCR7, YM-1, FIZZ-1, arginase-1, IL10 and IL4) and transcription factors (p-STAT6 and c/EBPβ) got depleted with concomitant augmentation of M1-polarizing transcription factors (p-STAT1, AP1 and IRF-1), miR146a target genes (TRAF6 and IRAK1), M1 cytokines (IL12 and TNFα), iNOS, nitric oxide, and nuclear translocation of phospho p-65 subunit. Neutralization of intracellular mature miR146a-5p pool in infected BALB/c mice lower organ parasite burden and expressions of M2 markers and IL10 with enrichment of M1 markers like iNOS and IL12. Additionally, we explored the novel role of super enhancer (SE), a cis-acting regulatory component, to enrich miR146a-5p expression during infection. Enhanced expression and nuclear retention of SE components like BET bromodomain 4 (BRD4) and p300 were found in infected BMDMs. Upon silencing BRD4, expressions of miR146a-5p and M2 markers were down regulated and TRAF6, IRAK1 and iNOS levels increased. STRING V.11 based predication and immune precipitation confirmed the strong interaction amongst BRD4, p300 and RNA pol II (RpbI). Chromatin immune precipitation studies suggested the recruitment of BRD4 at the enhancer loci of miR146a-5p gene during infection. Altogether, our findings revealed a novel role of BRD4/p300-depdendent super-enhancer in regulating miR146a expression during L. donovani infection which in turn mediates M2 polarization and immune-suppression. Visceral leishmaniasis (VL), caused by protozoan parasites Leishmania donovani, is the most severe form of leishmaniasis and is highly lethal if left untreated. Major obstacle for successful therapy of VL originates from the life-long immune-suppression triggered in the post kala-azar dermal leishmaniasis (PKDL) patients during infection. Identification of molecular principles behind such immune-suppression will add success in VL therapeutics. L. donovani hijacks the host macrophages and converts them from pro-inflammatory M1 to immune-suppressive M2 type, which allows successful infection establishment. Herein, we explored the indispensable role of miRNA-146a-5p in conversion of M1 to M2 type during infection. Both in vitro and in vivo miRNA silencing established miR146a-5p as an imperative negative regulator ofM1 polarization. Computational analysis as well as immune precipitation based experiments authenticated that L. donovani induces super enhancer complex mediated transcriptional upregulation of miR146a-5p. BET bromodomain protein 4 (BRD4) forms this SE complex along with p300 histone acetyl transferase and RNA pol II. Silencing of BRD4 significantly abrogated miR146a-5p mediated M2 polarization. In short, our current findings established a previously unrecognized role of BRD4-depdendent super enhancers in orchestrating persistent transcription of macrophage miR146a-5p which in turn promotes M2 polarization during L. donovani infection.
Collapse
Affiliation(s)
- Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
9
|
García-Sánchez M, Jiménez-Pelayo L, Horcajo P, Collantes-Fernández E, Ortega-Mora LM, Regidor-Cerrillo J. Neospora caninum infection induces an isolate virulence-dependent pro-inflammatory gene expression profile in bovine monocyte-derived macrophages. Parasit Vectors 2020; 13:374. [PMID: 32711550 PMCID: PMC7382829 DOI: 10.1186/s13071-020-04239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/15/2020] [Indexed: 01/22/2023] Open
Abstract
Background Neospora caninum is an obligate intracellular parasite, and its ability to survive inside host immune cells may be a key mechanism for the establishment of infection in cattle. In vitro studies carried out by our group have shown that N. caninum is able to replicate in bovine macrophages (MØs), alter their microbicidal mechanisms and exploit their motility. Furthermore, host-cell control seems to be isolate virulence-dependent. Methods To investigate the molecular basis underlying the innate responses in MØs against N. caninum and the mechanisms of parasite manipulation of the host cell environment, the transcriptome profile of bovine monocyte-derived MØs infected with high-virulence (Nc-Spain7) or low-virulence (Nc-Spain1H) N. caninum isolates was studied. Results Functional enrichment revealed upregulation of genes involved in chemokine signalling, inflammation, cell survival, and inhibition of genes related with metabolism and phagolysosome formation. MØs activation was characterized by the induction of a predominantly M1 phenotype with expression of TLR2, TLR3 and TLR9 and activation of the NF-ƙB signalling pathway. Heat-killed N. caninum tachyzoites failed to activate NF-ƙB, and to inhibit lysosomal activity and apoptosis, which indicates active modulation by the parasite. The FoxO signalling pathway, Th1-Th2 differentiation, glycosaminoglycan degradation and apoptosis were pathways enriched only for low virulent Nc-Spain1H infection. In addition, Nc-Spain1H infection upregulated the IL12A and IL8 pro-inflammatory cytokines, whereas IL23 was downregulated by high virulent Nc-Spain7. Conclusions This study revealed mechanisms implicated in the recognition of N. caninum by bovine MØs and in the development of the subsequent immune response. NF-ƙB seems to be the main signalling pathway implicated in the pro-inflammatory bovine MØs response against this pathogen. Apoptosis and phagolysosome maturation are processes repressed by N. caninum infection, which may guarantee its intracellular survival. The results also indicate that Nc-Spain7 may be able to partially circumvent the pro-inflammatory response whereas Nc-Spain1H induces a protective response to infection, which may explain the more efficient transmission of the high-virulence Nc-Spain7 isolate observed in vivo.![]()
Collapse
Affiliation(s)
- Marta García-Sánchez
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Laura Jiménez-Pelayo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Pilar Horcajo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Esther Collantes-Fernández
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Javier Regidor-Cerrillo
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain. .,Saluvet-Innova, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Fereig RM, Nishikawa Y. From Signaling Pathways to Distinct Immune Responses: Key Factors for Establishing or Combating Neospora caninum Infection in Different Susceptible Hosts. Pathogens 2020; 9:E384. [PMID: 32429367 PMCID: PMC7281608 DOI: 10.3390/pathogens9050384] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
: Neospora caninum is an intracellular protozoan parasite affecting numerous animal species. It induces significant economic losses because of abortion and neonatal abnormalities in cattle. In case of infection, the parasite secretes numerous arsenals to establish a successful infection in the host cell. In the same context but for a different purpose, the host resorts to different strategies to eliminate the invading parasite. During this battle, numerous key factors from both parasite and host sides are produced and interact for the maintaining and vanishing of the infection, respectively. Although several reviews have highlighted the role of different compartments of the immune system against N. caninum infection, each one of them has mostly targeted specific points related to the immune component and animal host. Thus, in the current review, we will focus on effector molecules derived from the host cell or the parasite using a comprehensive survey method from previous reports. According to our knowledge, this is the first review that highlights and discusses immune response at the host cell-parasite molecular interface against N. caninum infection in different susceptible hosts.
Collapse
Affiliation(s)
- Ragab M. Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan;
| |
Collapse
|
11
|
Xiao H, Wu YP, Yang CC, Yi Z, Zeng N, Xu Y, Zeng H, Deng P, Zhang Q, Wu M. Knockout of E2F1 enhances the polarization of M2 phenotype macrophages to accelerate the wound healing process. Kaohsiung J Med Sci 2020; 36:692-698. [PMID: 32349192 DOI: 10.1002/kjm2.12222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023] Open
Abstract
Wound healing is a complex process, which is classically divided into inflammation, proliferation, and remodeling phases. Macrophages play a key role in wound healing, however, whether E2F1 mediates the M1/M2 polarization during the wound healing process is not known. Skin wounds were surgically induced in E2F1-/- mice and their WT littermates. At day 2 and day 7 post-surgery, the wounded skin tissues including 2 to 3 mm normal skin were obtained. The wounded skin tissues were used for the analyses of immunofluorescence staining (CD68, iNOS, CD206), western blotting (CD68, iNOS, CD206, PPAR-γ) and Co-immunoprecipitation (E2F1-PPAR-γ interactions). E2F1-/- mice exhibited faster wound healing process. At day 2, the M2 macrophages were remarkably increased in the E2F1-/- mice. Surprisingly, in the border zone of the wound, E2F1-/- mice had also more M2 macrophages and fewer M1 macrophages at day 7 post-surgery, suggesting a certain degree of polarization amongst the M1 and M2 phenotypes. Co-IP revealed that E2F1 indeed interacted with PPAR-γ, meanwhile western blotting and RT-PCR showed higher expression of PPAR-γ in the E2F1-/- mice as compared to that in the WT mice. Therefore, the findings suggest that wound healing process could be accelerated with enhanced M2 polarization through increased PPAR-γ expression in E2F1 knockout mice.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang-Chun Yang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Deng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection. Front Microbiol 2019; 10:1121. [PMID: 31258517 PMCID: PMC6587667 DOI: 10.3389/fmicb.2019.01121] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Host redox dependent physiological responses play crucial roles in the determination of mycobacterial infection process. Mtb explores oxygen rich lung microenvironments to initiate infection process, however, later on the bacilli adapt to oxygen depleted conditions and become non-replicative and unresponsive toward anti-TB drugs to enter in the latency stage. Mtb is equipped with various sensory mechanisms and a battery of pro- and anti-oxidant enzymes to protect themselves from the host oxidative stress mechanisms. After host cell invasion, mycobacteria induces the expression of NADPH oxidase 2 (NOX2) to generate superoxide radicals (O 2 - ), which are then converted to more toxic hydrogen peroxide (H2O2) by superoxide dismutase (SOD) and subsequently reduced to water by catalase. However, the metabolic cascades and their key regulators associated with cellular redox homeostasis are poorly understood. Phagocytosed mycobacteria en route through different subcellular organelles, where the local environment generated during infection determines the outcome of disease. For a long time, mitochondria were considered as the key player in the redox regulation, however, accumulating evidences report vital role for peroxisomes in the maintenance of cellular redox equilibrium in eukaryotic cells. Deletion of peroxisome-associated peroxin genes impaired detoxification of reactive oxygen species and peroxisome turnover post-infection, thereby leading to altered synthesis of transcription factors, various cell-signaling cascades in favor of the bacilli. This review focuses on how mycobacteria would utilize host peroxisomes to alter redox balance and metabolic regulatory mechanisms to support infection process. Here, we discuss implications of peroxisome biogenesis in the modulation of host responses against mycobacterial infection.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Utsav Mukherjee
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
13
|
García-Sánchez M, Jiménez-Pelayo L, Horcajo P, Regidor-Cerrillo J, Ólafsson EB, Bhandage AK, Barragan A, Werling D, Ortega-Mora LM, Collantes-Fernández E. Differential Responses of Bovine Monocyte-Derived Macrophages to Infection by Neospora caninum Isolates of High and Low Virulence. Front Immunol 2019; 10:915. [PMID: 31114577 PMCID: PMC6503000 DOI: 10.3389/fimmu.2019.00915] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Neospora caninum, a protozoan parasite closely related to Toxoplasma gondii, represents one of the main causes of abortion in cattle. Macrophages (MØs) are mediators of the innate immune response against infection and likely one of the first cells encountered by the parasite during the host infection process. In this study, we investigated in vitro how high or low virulent isolates of N. caninum (Nc-Spain7 and Nc-Spain1H, respectively) interact with bovine monocyte-derived MØs and the influence of the isolate virulence on the subsequent cellular response. Both isolates actively invaded, survived and replicated in the MØs. However, Nc-Spain7 showed a higher invasion rate and a replication significantly faster, following an exponential growth model, whereas Nc-Spain1H presented a delayed replication and a lower growth rate without an exponential pattern. N. caninum infection induced a hypermigratory phenotype in bovine MØs that was characterized by enhanced motility and transmigration in vitro and was accompanied by morphological changes and abrogated extracellular matrix degradation. A significantly higher hypermotility was observed with the highly virulent isolate Nc-Spain7. Nc-Spain1H-infected MØs showed elevated reactive oxygen species (ROS) production and IL12p40 expression, which also resulted in increased IFN-γ release by lymphocytes, compared to cells infected with Nc-Spain7. Furthermore, IL-10 was upregulated in MØs infected with both isolates. Infected MØs exhibited lower expression of MHC Class II, CD86, and CD1b molecules than uninfected MØs, with non-significant differences between isolates. This work characterizes for the first time N. caninum replication in bovine monocyte-derived MØs and details isolate-dependent differences in host cell responses to the parasite.
Collapse
Affiliation(s)
- Marta García-Sánchez
- SALUVET, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Laura Jiménez-Pelayo
- SALUVET, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Complutense University of Madrid, Madrid, Spain
| | | | - Einar B. Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, North Mymms, United Kingdom
| | | | | |
Collapse
|
14
|
Leopold Wager CM, Arnett E, Schlesinger LS. Macrophage nuclear receptors: Emerging key players in infectious diseases. PLoS Pathog 2019; 15:e1007585. [PMID: 30897154 PMCID: PMC6428245 DOI: 10.1371/journal.ppat.1007585] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.
Collapse
Affiliation(s)
| | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Larry S. Schlesinger
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
15
|
Characteristic pro-inflammatory cytokines and host defence cathelicidin peptide produced by human monocyte-derived macrophages infected withNeospora caninum. Parasitology 2017; 145:871-884. [DOI: 10.1017/s0031182017002104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractNeospora caninumis a coccidian intracellular protozoan capable of infecting a wide range of mammals, although severe disease is mostly reported in dogs and cattle. Innate defences triggered by monocytes/macrophages are key in the pathogenesis of neosporosis, as these cells are first-line defenders against intracellular infections. The aim of this study was to characterize infection and innate responses in macrophages infected withN. caninumusing a well-known cell model to study macrophage functions (human monocyte THP-1 cells). Intracellular invasion of live tachyzoites occurred as fast as 4 h (confirmed with immunofluorescence microscopy usingN. caninum-specific antibodies). Macrophages infected byN. caninumhad increased expression of pro-inflammatory cytokines (TNFα, IL-1β, IL-8, IFNγ). Interestingly,N. caninuminduced expression of host-defence peptides (cathelicidins), a mechanism of defence never reported forN. caninuminfection in macrophages. The expression of cytokines and cathelicidins in macrophages invaded byN. caninumwas mediated by mitogen-activated protein kinase (MEK 1/2). Secretion of such innate factors fromN. caninum-infected macrophages reduced parasite internalization and promoted the secretion of pro-inflammatory cytokines in naïve macrophages. We concluded that rapid invasion of macrophages byN. caninumtriggered protective innate defence mechanisms against intracellular pathogens.
Collapse
|