1
|
Nicolau ST, Tres DP, Ayala TS, Menolli RA. Nonsteroidal Anti-Inflammatory Drugs and Experimental Chagas Disease: An Unsolved Question. Parasite Immunol 2024; 46:e13057. [PMID: 39008292 DOI: 10.1111/pim.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Chagas disease is a parasitic disease caused by the protozoan Trypanosoma cruzi with an acute, detectable blood parasites phase and a chronic phase, in which the parasitemia is not observable, but cardiac and gastrointestinal consequences are possible. Mice are the principal host used in experimental Chagas disease but reproduce the human infection depending on the animal and parasite strain, besides dose and route of administration. Lipidic mediators are tremendously involved in the pathogenesis of T. cruzi infection, meaning the prostaglandins and thromboxane, which participate in the immunosuppression characteristic of the acute phase. Thus, the eicosanoids inhibition caused by the nonsteroidal anti-inflammatory drugs (NSAIDs) alters the dynamic of the disease in the experimental models, both in vitro and in vivo, which can explain the participation of the different mediators in infection. However, marked differences are founded in the various NSAIDs existing because of the varied routes blocked by the drugs. So, knowing the results in the experimental models of Chagas disease with or without the NSAIDs helps comprehend the pathogenesis of this infection, which still needs a better understanding.
Collapse
Affiliation(s)
- Scheila Thaís Nicolau
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Daniela Patrícia Tres
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Thaís Soprani Ayala
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Rafael Andrade Menolli
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| |
Collapse
|
2
|
Burgess V, Maya JD. Statin and aspirin use in parasitic infections as a potential therapeutic strategy: A narrative review. Rev Argent Microbiol 2023; 55:278-288. [PMID: 37019801 DOI: 10.1016/j.ram.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Infections, including zoonoses, constitute a threat to human health due to the spread of resistant pathogens. These diseases generate an inflammatory response controlled by a resolving mechanism involving specialized membrane lipid-derived molecules called lipoxins, resolvins, maresins, and protectins. The production of some of these molecules can be triggered by aspirin or statins. Thus, it is proposed that modulation of the host response could be a useful therapeutic strategy, contributing to the management of resistance to antiparasitic agents or preventing drift to chronic, host-damaging courses. Therefore, the present work presents the state of the art on the use of statins or aspirin for the experimental management of parasitic infections such as Chagas disease, leishmaniasis, toxoplasmosis or malaria. The methodology used was a narrative review covering original articles from the last seven years, 38 of which met the inclusion criteria. Based on the publications consulted, modulation of the resolution of inflammation using statins may be feasible as an adjuvant in the therapy of parasitic diseases. However, there was no strong experimental evidence on the use of aspirin; therefore, further studies are needed to evaluate its role inflammation resolution process in infectious diseases.
Collapse
Affiliation(s)
- Valentina Burgess
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile.
| |
Collapse
|
3
|
dos Santos LF, Rodrigues GF, Malvezi AD, de Souza M, Nakama RP, Lovo-Martins MI, Pinge-Filho P. Beneficial effects of acetylsalicylic acid (aspirin) on the actions of extracellular vesicles shed by Trypanosoma cruzi in macrophages. Parasitol Int 2023; 92:102697. [DOI: 10.1016/j.parint.2022.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
4
|
Zhao Y, Yang Y, Liu M, Qin X, Yu X, Zhao H, Li X, Li W. COX-2 is required to mediate crosstalk of ROS-dependent activation of MAPK/NF-κB signaling with pro-inflammatory response and defense-related NO enhancement during challenge of macrophage-like cell line with Giardia duodenalis. PLoS Negl Trop Dis 2022; 16:e0010402. [PMID: 35482821 PMCID: PMC9089906 DOI: 10.1371/journal.pntd.0010402] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/10/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Giardia duodenalis, the causative agent of giardiasis, is among the most important causes of waterborne diarrheal diseases around the world. Giardia infection may persist over extended periods with intestinal inflammation, although minimal. Cyclooxygenase (COX)-2 is well known as an important inducer of inflammatory response, while the role it played in noninvasive Giardia infection remains elusive. Here we investigated the regulatory function of COX-2 in Giardia-induced pro-inflammatory response and defense-related nitric oxide (NO) generation in macrophage-like cell line, and identified the potential regulators. We initially found that Giardia challenge induced up-regulation of IL-1β, IL-6, TNF-α, prostaglandin (PG) E2, and COX-2 in macrophages, and pretreatment of the cells with COX-2 inhibitor NS398 reduced expressions of those pro-inflammatory factors. It was also observed that COX-2 inhibition could attenuate the up-regulated NO release and inducible NO synthase (iNOS) expression induced by Giardia. We further confirmed that Giardia-induced COX-2 up-regulation was mediated by the phosphorylation of p38 and ERK1/2 MAPKs and NF-κB. In addition, inhibition of reactive oxygen species (ROS) by NAC was shown to repress Giardia-induced activation of MAPK/NF-κB signaling, up-regulation of COX-2 and iNOS, increased levels of PGE2 and NO release, and up-expressions of IL-1β, IL-6, and TNF-α. Collectively, in this study, we revealed a critical role of COX-2 in modulating pro-inflammatory response and defense-related NO production in Giardia-macrophage interactions, and this process was evident to be controlled by ROS-dependent activation of MAPK/NF-κB signaling. The results can deepen our knowledge of anti-Giardia inflammatory response and host defense mechanisms.
Collapse
Affiliation(s)
- Yudan Zhao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongwu Yang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Min Liu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuening Qin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiran Yu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huimin Zhao
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoyun Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wei Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- * E-mail:
| |
Collapse
|
5
|
Carrillo I, Rabelo RAN, Barbosa C, Rates M, Fuentes-Retamal S, González-Herrera F, Guzmán-Rivera D, Quintero H, Kemmerling U, Castillo C, Machado FS, Díaz-Araya G, Maya JD. Aspirin-triggered resolvin D1 reduces parasitic cardiac load by decreasing inflammation in a murine model of early chronic Chagas disease. PLoS Negl Trop Dis 2021; 15:e0009978. [PMID: 34784372 PMCID: PMC8631674 DOI: 10.1371/journal.pntd.0009978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease. Methodology/Principal findings C57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 μg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 μg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue. Conclusions/Significance AT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite. Chagas disease is prevalent in Latin America and is widely distributed worldwide due to migration. In 30% of patients, if the parasite is left untreated, the disease may progress from an acute symptomless phase to chronic myocardial inflammation, which can cause heart failure and death, years after the infection. Imbalances in the inflammatory response are related to this progression. Current treatments cannot prevent or reverse the cardiac damage inflicted by the parasite. Aspirin-triggered resolvin D1, also named AT-RvD1, can modify cellular and humoral inflammatory responses leading to the resolution of inflammation, thus promoting healing and restoring organ function. In this study, AT-RvD1, in an N-formyl peptide receptor 2 (FPR2)-dependent manner, was shown to regulate local and systemic inflammation and decrease cellular infiltration in the heart tissue of mice chronically infected with the parasite and reduce cardiac hypertrophy and fibrosis in the early stages of the chronic phase of the disease. Importantly, AT-RvD1 was able to decrease parasite load in the infected hearts. Thus, this research indicates that At-RvD1 treatment is a potential therapeutic strategy that offers an improvement on current drug therapies.
Collapse
Affiliation(s)
- Ileana Carrillo
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rayane Aparecida Nonato Rabelo
- Programa em Ciências da Saúde, Doenças Infecciosas e Medicina Tropical/ Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - César Barbosa
- Laboratório de Imunorregulação de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Rates
- Laboratório de Imunorregulação de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sebastián Fuentes-Retamal
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Guzmán-Rivera
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Escuela de Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Helena Quintero
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Fabiana S. Machado
- Programa em Ciências da Saúde, Doenças Infecciosas e Medicina Tropical/ Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Imunorregulação de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillermo Díaz-Araya
- Departamento de Farmacología Química y Toxicología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- * E-mail: (GD-A); (JDM)
| | - Juan D. Maya
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GD-A); (JDM)
| |
Collapse
|
6
|
Combination Therapy Using Benznidazole and Aspirin during the Acute Phase of Experimental Chagas Disease Prevents Cardiovascular Dysfunction and Decreases Typical Cardiac Lesions in the Chronic Phase. Antimicrob Agents Chemother 2020; 64:AAC.00069-20. [PMID: 32366719 DOI: 10.1128/aac.00069-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is one of the main causes of death due to cardiomyopathy and heart failure in Latin American countries. The treatment of Chagas disease is directed at eliminating the parasite, decreasing the probability of cardiomyopathy and disrupting the disease transmission cycle. Benznidazole (BZ) and nifurtimox (Nfx) are recognized as effective drugs for the treatment of Chagas disease by the World Health Organization, but both have high toxicity and limited efficacy, especially in the chronic disease phase. At low doses, aspirin (ASA) has been reported to protect against T. cruzi infection. We evaluated the effectiveness of BZ in combination with ASA at low doses during the acute disease phase and evaluated cardiovascular aspects and cardiac lesions in the chronic phase. ASA treatment prevented the cardiovascular dysfunction (hypertension and tachycardia) and typical cardiac lesions. Moreover, BZ+ASA-treated mice had a smaller cardiac fibrotic area than BZ-treated mice. These results were associated with an increase in numbers of eosinophils and reticulocytes and levels of nitric oxide in the plasma and cardiac tissue of ASA-treated mice relative to respective controls. These effects of ASA and BZ+ASA in chronically infected mice were inhibited by pretreatment with the lipoxin A4 (LXA4) receptor antagonist Boc-2, indicating that the protective effects of ASA are mediated by ASA-triggered lipoxin. These results emphasize the importance of exploring new drug combinations for treatments of the acute phase of Chagas disease that are beneficial for patients with chronic disease.
Collapse
|
7
|
Wozniak JM, Silva TA, Thomas D, Siqueira-Neto JL, McKerrow JH, Gonzalez DJ, Calvet CM. Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Negl Trop Dis 2020; 14:e0007980. [PMID: 32433643 PMCID: PMC7279607 DOI: 10.1371/journal.pntd.0007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.
Collapse
Affiliation(s)
- Jacob M. Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
| | - Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
- * E-mail: (DJG); (CMC)
| | - Claudia M. Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
- * E-mail: (DJG); (CMC)
| |
Collapse
|
8
|
Pereira ACA, Silva RJ, Franco PS, de Oliveira Gomes A, Souza G, Milian ICB, Ribeiro M, Rosini AM, Guirelli PM, Ramos ELP, Mineo TWP, Mineo JR, Silva NM, Ferro EAV, Barbosa BF. Cyclooxygenase (COX)-2 Inhibitors Reduce Toxoplasma gondii Infection and Upregulate the Pro-inflammatory Immune Response in Calomys callosus Rodents and Human Monocyte Cell Line. Front Microbiol 2019; 10:225. [PMID: 30809216 PMCID: PMC6379304 DOI: 10.3389/fmicb.2019.00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is able to infect a wide range of vertebrates, including humans. Studies show that cyclooxygenase-2 (COX-2) is a modulator of immune response in multiple types of infection, such as Trypanosoma cruzi. However, the role of COX-2 during T. gondii infection is still unclear. The aim of this study was to investigate the role of COX-2 during infection by moderately or highly virulent strains of T. gondii in Calomys callosus rodents and human THP-1 cells. C. callosus were infected with 50 cysts of T. gondii (ME49), treated with COX-2 inhibitors (meloxicam or celecoxib) and evaluated to check body weight and morbidity. After 40 days, brain and serum were collected for detection of T. gondii by real-time PCR and immunohistochemistry or cytokines by CBA. Furthermore, peritoneal macrophages or THP-1 cells, infected with RH strain or uninfected, were treated with meloxicam or celecoxib to evaluate the parasite proliferation by colorimetric assay and cytokine production by ELISA. Finally, in order to verify the role of prostaglandin E2 in COX-2 mechanism, THP-1 cells were infected, treated with meloxicam or celecoxib plus PGE2, and analyzed to parasite proliferation and cytokine production. The data showed that body weight and morbidity of the animals changed after infection by T. gondii, under both treatments. Immunohistochemistry and real-time PCR showed a reduction of T. gondii in brains of animals treated with both COX-2 inhibitors. Additionally, it was observed that both COX-2 inhibitors controlled the T. gondii proliferation in peritoneal macrophages and THP-1 cells, and the treatment with PGE2 restored the parasite growth in THP-1 cells blocked to COX-2. In the serum of Calomys, upregulation of pro-inflammatory cytokines was detected, while the supernatants of peritoneal macrophages and THP-1 cells demonstrated significant production of TNF and nitrite, or TNF, nitrite and MIF, respectively, under both COX-2 inhibitors. Finally, PGE2 treatment in THP-1 cells triggered downmodulation of pro-inflammatory mediators and upregulation of IL-8 and IL-10. Thus, COX-2 is an immune mediator involved in the susceptibility to T. gondii regardless of strain or cell types, since inhibition of this enzyme induced control of infection by upregulating important pro-inflammatory mediators against Toxoplasma.
Collapse
Affiliation(s)
- Ana Carolina Alcântara Pereira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Angelica de Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Guilherme Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Iliana Claudia Balga Milian
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Pâmela Mendonça Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Eliézer Lucas Pires Ramos
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
9
|
López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and Pro-resolving Lipids in Trypanosomatid Infections: A Key to Understanding Parasite Control. Front Microbiol 2018; 9:1961. [PMID: 30186271 PMCID: PMC6113562 DOI: 10.3389/fmicb.2018.01961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pathogenic trypanosomatids (Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp.) are protozoan parasites that cause neglected diseases affecting millions of people in Africa, Asia, and the Americas. In the process of infection, trypanosomatids evade and survive the immune system attack, which can lead to a chronic inflammatory state that induces cumulative damage, often killing the host in the long term. The immune mediators involved in this process are not entirely understood. Most of the research on the immunologic control of protozoan infections has been focused on acute inflammation. Nevertheless, when this process is not terminated adequately, permanent damage to the inflamed tissue may ensue. Recently, a second process, called resolution of inflammation, has been proposed to be a pivotal process in the control of parasite burden and establishment of chronic infection. Resolution of inflammation is an active process that promotes the normal function of injured or infected tissues. Several mediators are involved in this process, including eicosanoid-derived lipids, cytokines such as transforming growth factor (TGF)-β and interleukin (IL)-10, and other proteins such as Annexin-V. For example, during T. cruzi infection, pro-resolving lipids such as 15-epi-lipoxin-A4 and Resolvin D1 have been associated with a decrease in the inflammatory changes observed in experimental chronic heart disease, reducing inflammation and fibrosis, and increasing host survival. Furthermore, Resolvin D1 modulates the immune response in cells of patients with Chagas disease. In Leishmania spp. infections, pro-resolving mediators such as Annexin-V, lipoxins, and Resolvin D1 are related to the modulation of cutaneous manifestation of the disease. However, these mediators seem to have different roles in visceral or cutaneous leishmaniasis. Finally, although T. brucei infections are less well studied in terms of their relationship with inflammation, it has been found that arachidonic acid-derived lipids act as key regulators of the host immune response and parasite burden. Also, cytokines such as IL-10 and TGF-β may be related to increased infection. Knowledge about the inflammation resolution process is necessary to understand the host–parasite interplay, but it also offers an interesting opportunity to improve the current therapies, aiming to reduce the detrimental state induced by chronic protozoan infections.
Collapse
Affiliation(s)
- Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Molina-Berríos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Abarca-Sanhueza
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Urrutia-Llancaqueo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel Peña-Espinoza
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|