1
|
Thomas L, Khan NA, Siddiqui R, Alawfi BS, Lloyd D. Cell death of Acanthamoeba castellanii following exposure to antimicrobial agents commonly included in contact lens disinfecting solutions. Parasitol Res 2023; 123:16. [PMID: 38060008 DOI: 10.1007/s00436-023-08061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Several antimicrobial agents are commonly included in contact lens disinfectant solutions including chlorhexidine diacetate (CHX), polyhexamethylene biguanide (PHMB) or myristamidopropyl dimethylamine (MAPD); however, their mode of action, i.e. necrosis versus apoptosis is incompletely understood. Here, we determined whether a mechanism of cell death resembling that of apoptosis was present in Acanthamoeba castellanii of the T4 genotype (NEFF) following exposure to the aforementioned antimicrobials using the anticoagulant annexin V that undergoes rapid high affinity binding to phosphatidylserine in the presence of calcium, making it a sensitive probe for phosphatidylserine exposure. The results revealed that under the conditions employed in this study, an apoptotic pathway of cell death in this organism at the tested conditions does not occur. Our findings suggest that necrosis is the likely mode of action; however, future mechanistic studies should be accomplished in additional experimental conditions to further comprehend the molecular mechanisms of cell death in Acanthamoeba.
Collapse
Affiliation(s)
- Louise Thomas
- Microbiology Research, School of Biosciences, Cardiff University, P. O. Box 915, Cardiff, CF10 3AX, UK
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh, Edinburgh, EH14 4AS, UK
| | - Bader S Alawfi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| | - David Lloyd
- Microbiology Research, School of Biosciences, Cardiff University, P. O. Box 915, Cardiff, CF10 3AX, UK.
| |
Collapse
|
2
|
Ahmed U, Ong SK, Khan KM, Siddiqui R, Khan NA, Shaikh MF, Alawfi BS, Anwar A. Effect of embelin on inhibition of cell growth and induction of apoptosis in Acanthamoeba castellanii. Arch Microbiol 2023; 205:360. [PMID: 37898989 DOI: 10.1007/s00203-023-03698-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Acanthamoeba castellanii is the causative agent of fatal encephalitis and blinding keratitis. Current therapies remain a challenge, hence there is a need to search for new therapeutics. Here, we tested embelin (EMB) and silver nanoparticles doped with embelin (EMB-AgNPs) against A. castellanii. Using amoebicidal assays, the results revealed that both compounds inhibited the viability of Acanthamoeba, having an IC50 of 27.16 ± 0.63 and 13.63 ± 1.08 μM, respectively, while causing minimal cytotoxicity against HaCaT cells in vitro. The findings suggest that both samples induced apoptosis through the mitochondria-mediated pathway. Differentially expressed genes analysis showed that 652 genes were uniquely expressed in treated versus untreated cells, out of which 191 were significantly regulated in the negative control vs. conjugate. Combining the analysis, seven genes (ARIH1, RAP1, H3, SDR16C5, GST, SRX1, and PFN) were highlighted as the most significant (Log2 (FC) value ± 4) for the molecular mode of action in vitro. The KEGG analysis linked most of the genes to apoptosis, the oxidative stress signaling pathway, cytochrome P450, Rap1, and the oxytocin signaling pathways. In summary, this study provides a thorough framework for developing therapeutic agents against microbial infections using EMB and EMB-AgNPs.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, 34010, Istanbul, Turkey.
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, Australia
| | - Bader Saleem Alawfi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, 42353, Madinah, Saudi Arabia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, 47500, Selangor, Malaysia.
| |
Collapse
|
3
|
Hernández-Martínez D, Castro Pot E, Hernández Olmos P, Guzmán Hernández EA, Cobos DS, Villa Ramírez S, Villamar Duque TE, Durán Díaz Á, Omaña-Molina M. Acanthamoeba castellanii trophozoites that survive multipurpose solutions are able to adhere to cosmetic contact lenses, increasing the risk of infection. Heliyon 2023; 9:e19599. [PMID: 37809484 PMCID: PMC10558846 DOI: 10.1016/j.heliyon.2023.e19599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Amoebae of the genus Acanthamoeba are etiological agents of amoebic keratitis, for which up to now there is no treatment of choice and one of its main risk factors is the use of contact lenses, including cosmetic contact lenses. Recently there has been an increase in amoebic keratitis cases due to the use of cosmetic contact lenses. Therefore, having a solution for the care of lenses with an efficient disinfectant effect that prevents the adhesion of trophozoites to lenses becomes essential. This study was carried out to determine the effect of 8 multipurpose contact lenses care solutions on Acanthamoeba castellanii trophozoites viability, and the efficiency of two of them to prevent the trophozoites adherence onto two cosmetic contact lenses (Acuvue 2, approved by the US Food and Drug Administration, and Magic Eye CCL, not approved). After 3 h of interaction, only AO Sept Plus, OPTI FREE Replenish, Renu Plus, Bio True and Multiplus significantly reduced the number of viable trophozoites with respect to the control; at 6 h Renu Plus, and at 12 h Conta Soft Plus and Multiplus, maintained the inhibitory effect. Only Opti Free Pure Moist did not significantly reduce the number of viable trophozoites. Multiplus and Opti Free Pure Moist (selected for their greater and lesser antiamibic effect) significantly reduced trophozoite adherence to both lenses; however, Opti Free Pure Moist was more efficient, despite the fact that A. castellanii adhered similarly to both lenses. Our results show that in all the multipurpose solutions evaluated, hundreds of viable A. castellanii trophozoites remain after several hours of incubation. Therefore, storage of the lenses in their case with MPS maintains the potential risk of amoebic keratitis in, cosmetic contact lenses wearers. Moreover, the use of CCL, not approved by the FDA, can increase the risk factor for AK since its poor manufacture can favor the permanence of amoebae, in addition to being a risk for corneal integrity.
Collapse
Affiliation(s)
- Dolores Hernández-Martínez
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Edson Castro Pot
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Perla Hernández Olmos
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | | | - David Segura Cobos
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Sandra Villa Ramírez
- Carrera de Optometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Tomás Ernesto Villamar Duque
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Ángel Durán Díaz
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Maritza Omaña-Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| |
Collapse
|
4
|
Fechtali-Moute Z, Loiseau PM, Pomel S. Stimulation of Acanthamoeba castellanii excystment by enzyme treatment and consequences on trophozoite growth. Front Cell Dev Biol 2022; 10:982897. [PMID: 36172275 PMCID: PMC9511172 DOI: 10.3389/fcell.2022.982897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acanthamoeba castellanii is a widespread Free-Living Amoeba (FLA) that can cause severe ocular or cerebral infections in immunocompetent and immunocompromised patients, respectively, besides its capacity to transport diverse pathogens. During their life cycle, FLA can alternate between a vegetative form, called a trophozoite, and a latent and resistant form, called a cyst. This resistant form is characterized by the presence of a cell wall containing two layers, namely the ectocyst and the endocyst, mainly composed of cellulose and proteins. In the present work, we aimed to stimulate Acanthamoeba castellanii excystment by treating their cysts with a cellulolytic enzyme, i.e., cellulase, or two proteolytic enzymes, i.e., collagenase and pepsin. While 11 days were necessary to obtain total excystment in the control at 27°C, only 48 h were sufficient at the same temperature to obtain 100% trophozoites in the presence of 25 U/mL cellulase, 50 U/mL collagenase or 100 U/mL pepsin. Additionally, more than 96% amoebae have excysted after only 24 h with 7.5 U/mL cellulase at 30°C. Nevertheless, no effect of the three enzymes was observed on the excystment of Balamuthia mandrillaris and Vermamoeba vermiformis. Surprisingly, A. castellanii trophozoites excysted in the presence of cellulase displayed a markedly shorter doubling time at 7 h, in comparison to the control at 23 h. Likewise, trophozoites doubled their population in 9 h when both cellulose and cellulase were added to the medium, indicating that Acanthamoeba cyst wall degradation products promote their trophozoite proliferation. The analysis of cysts in epifluorescent microscopy using FITC-lectins and in electron microscopy revealed a disorganized endocyst and a reduction of the intercystic space area after cellulase treatment, implying that these cellular events are preliminary to trophozoite release during excystment. Further studies would be necessary to determine the signaling pathways involved during this amoebal differentiation process to identify new therapeutic targets for the development of anti-acanthamoebal drugs.
Collapse
|
5
|
Martín-Escolano R, Pérez-Cordón G, Arán VJ, Marín C, Sánchez-Moreno M, Rosales MJ. 5-Nitroindazole derivatives as potential therapeutic alternatives against Acanthamoeba castellanii. Acta Trop 2022; 232:106538. [PMID: 35618027 DOI: 10.1016/j.actatropica.2022.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
Amoebas of the genus Acanthamoeba are distributed worldwide, including species with a high pathogenic capacity for humans. In a similar way to what occurs with other parasitic protozoa, the available treatments show variable effectiveness in addition to high toxicity, which demands the development of new treatments. Positive results of 5-nitroindazole derivatives against several protozoa parasites suggest that these compounds may be a promising tool for the development of efficient antiparasitic drugs. In the present work we have evaluated the in vitro activity of ten 5-nitroindazole derivatives against Acanthamoeba castellanii trophozoites and cysts. To that end, AlamarBlue Assay Reagent® was used to determine the activity against trophozoites compared to the reference drug chlorhexidine digluconate. Cytotoxicity of the compounds was evaluated using Vero cells. The activity on cysts was evaluated by light microscopy and using a Neubauer chamber to quantifying cysts and presence of trophozoites, as an indication of cyst. Our results showed the effectiveness of the 5-nitroindazole derivatives tested against both trophozoites and cysts of A. castellani highlighting 5-nitroindazole derivative 8 which showed a 80% activity on cysts, which is higher than that of the reference drug. Moreover, 5-nitroindazole derivatives 8, 9 and 10 were more effective on trophozoites than the reference drug showing IC50 values lower than 5 µM. Taking together these results, these 5-nitroindazole derivatives specially compound 8, might be a promising alternative for the development of more efficient treatments against A. castellani infection.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Laboratory of Molecular & Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent, Canterbury, CT27NJ, UK.
| | - Gregorio Pérez-Cordón
- Department of Parasitology, University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - Vicente J Arán
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - Clotilde Marín
- Department of Parasitology, University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain
| | - María José Rosales
- Department of Parasitology, University of Granada, Severo Ochoa s/n, E-18071, Granada, Spain.
| |
Collapse
|
6
|
Saeed BQ, Rawas-Qalaji M, Akbar N, Siddiqui R, Roberta C, Manzoor S, Muhammad JS, Adrees AO, Al-Shahrabi R, Khan NA. Evaluation of Nanoparticles with 5-Fluorouracil and Chloroquine on Acanthamoeba castellanii activity. Mol Biochem Parasitol 2022; 250:111492. [PMID: 35714753 DOI: 10.1016/j.molbiopara.2022.111492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/04/2023]
Abstract
Acanthamoeba is opportunistic pathogens that cause vision-threatening Acanthamoeba keratitis (AK). Previous studies proposed the use of chloroquine (CQ) and 5-fluorouracil (5FU) as anti-Acanthamoeba agents. The objective of this study was to determine the benefit of using 5FU and CQ nanoparticles (NP) formulations against A. castellanii that belonging to the T4 genotype and evaluate their anti-Acanthamoebic characteristic. Triplicate batches of 5FU nanoparticles (5FU-NP) were synthesized by using a modified nanoprecipitation method, while CQ anoparticles (CQ-NP) synthesized using a modified double emulsion method. The synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. Cytotoxicity assays were performed using human keratinocyte cells (HaCat) to determine the effect of CQ and 5FU nanoformulations on host cells. 5FU-NP with a concentration of 60µM showed significant inhibition to amoeba binding into human cell lines and remarkable prevention mainly during the encystation stage. Moreover, 5FU-NP resulted in less cytotoxicity and pathogenicity when compared with the free 5FU. On the other hand, CQ and CQ-NP, at the same concentration, showed poor inhibition to amoeba binding into human cells and insignificant prevention to encystation stage. Moderate human cells damage was resulted following their treatment with CQ and CQ-NP. In conclusion, 5FU may have the potential as an antiamoebic agent against Acanthamoeba spp. preferably as a nanoformulation to enhance its activity and reduce its cytoxicity.
Collapse
Affiliation(s)
- Balsam Qubais Saeed
- Department of Clinical Sciences, College of Medicine, University of Sharjah, UAE; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Mutasem Rawas-Qalaji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, UAE
| | | | - Cagliani Roberta
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shaista Manzoor
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Omar Adrees
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rula Al-Shahrabi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, UAE
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, UAE; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Application of Histone Deacetylase Inhibitors MPK472 and KSK64 as a Potential Treatment Option for Acanthamoeba Keratitis. Antimicrob Agents Chemother 2020; 64:AAC.01506-20. [PMID: 32928736 DOI: 10.1128/aac.01506-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Treatment of Acanthamoeba keratitis (AK) is difficult because Acanthamoeba cysts are resistant to drugs, and as such, successful treatment requires an effective approach that inhibits cyst formation. Histone deacetylase inhibitors (HDACis) are involved in cell proliferation, differentiation, and apoptotic cell death. In this study, the effects of HDACis such as MPK472 and KSK64 on Acanthamoeba castellanii trophozoites and cysts were observed. MPK472 and KSK64 showed at least 60% amoebicidal activity against Acanthamoeba trophozoites at a concentration of 10 μM upon 8 h of treatment. Neither of the two HDACis affected mature cysts, but significant amoebicidal activities (36.4 and 33.9%) were observed against encysting Acanthamoeba following treatment with 5 and 10 μM HDACis for 24 h. Light microscopy and transmission electron microscopy results confirmed that the encystation of Acanthamoeba was inhibited by the two HDACis. In addition to this, low cytopathic effects on human corneal epithelial (HCE) cells were observed following treatment with MPK472 and KSK64 for 24 h. Our results indicate that the HDACis MPK472 and KSK64 could be used as new candidates for the development of an optimal therapeutic option for AK.
Collapse
|
8
|
Martínez-Orellana P, Baxarias M, Good L, Solano-Gallego L. The Effects of Polyhexamethylene Biguanide (PHMB) and TLR Agonists Alone or as Polyplex Nanoparticles against Leishmania infantum Promastigotes and Amastigotes. Vet Sci 2020; 7:vetsci7040179. [PMID: 33202979 PMCID: PMC7711591 DOI: 10.3390/vetsci7040179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Dogs are the main reservoir for Leishmania infantum, manifesting from a subclinical to a fatal disease. Limited treatments are available, although new antiparasitics and immunomodulators are pursued. Polyhexamethylene biguanide (PHMB) has a broad antimicrobial spectrum, including antiparasitic activity. Here, we evaluated the potential for Toll-like receptor agonists (TLRa) and PHMB alone, and as polyplex nanoparticles containing PHMB and TLR4 or TLR9 agonists, to selectively kill L. infantum. Susceptibility of L. infantum promastigotes to PHMB, miltefosine, and allopurinol was performed, and the half-maximum inhibitory concentrations (IC50) were determined. Then, DH-82 cells were infected and treated with PHMB alone or combined with TLR4a (MPLA-SM) or TLR9a (CpG ODNs) and allopurinol alone. The IC50 values of L. infantum promastigotes were PHMB (1.495 µM), miltefosine (9.455 µM), and allopurinol (0.124 µM). After infection, treated DH-82 cells displayed a lower percentage (p = 0.0316), intensity (p = 0.0002), and index of infection (p = 0.0022) when compared to non-treated cells. PHMB induced lower percentage of infection alone (p = 0.043), in combination with TLR9a (p = 0.043), and with TLR4a (p = 0.0213). Supernatants were collected and used to measure TNF-α and IL-6 levels. Increased TNF-α was observed after PHMB plus TLR4a, relative to uninfected and infected untreated macrophages (p = 0.043). PHMB combined with TLR4a shows promise as a potential anti-L. infantum drug combination, as well as inducer of proinflammatory response, as demonstrated by decreased infection and increased TNF-α production.
Collapse
Affiliation(s)
- Pamela Martínez-Orellana
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.M.-O.); (M.B.)
| | - Marta Baxarias
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.M.-O.); (M.B.)
| | - Liam Good
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London NW1 0NH, UK;
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (P.M.-O.); (M.B.)
- Correspondence:
| |
Collapse
|
9
|
Koutsogiannis Z, MacLeod ET, Maciver SK. G418 induces programmed cell death in Acanthamoeba through the elevation of intracellular calcium and cytochrome c translocation. Parasitol Res 2019; 118:641-651. [PMID: 30617503 PMCID: PMC6349814 DOI: 10.1007/s00436-018-6192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/19/2018] [Indexed: 11/27/2022]
Abstract
Acanthamoeba is a widely distributed opportunistic parasite which causes a vision-threatening keratitis and a life-threatening encephalitis. The cyst stage of this amoeba is especially resistant to currently used therapeutics and so alternative agents are urgently required. Growing evidence supports the existence of a programmed cell death system (PCD) in Acanthamoeba and while some features are shared by higher eukaryote cells, others differ. It is hoped that by understanding these differences we can exploit them as targets for novel drug intervention to activate PCD pathways in the amoebae but not the invaded human tissue. Here, we use the aminoglycoside G418 to activate PCD in Acanthamoeba. This drug caused a shape change in the treated amoebae. Cells rounded up and contracted, and after 6 h fragments of cells resembling the ‘apoptotic bodies’ of vertebrate cells were observed. G418 causes an increase in intracellular calcium from a resting level of 24 nM to 60 nM after 6 h of treatment. Mitochondrial function as assayed by the ΔΨm reporting dye JC-1 and CTC a redox dye becomes inhibited during treatment and we have found that cytochrome c is released from the mitochondria. Cells stained with Hoechst showed first an alteration in chromatin structure and then a vesiculation of the nucleus with G418 treatment, although we found no obvious breakdown in genomic DNA in the early stages of PCD.
Collapse
Affiliation(s)
| | - Ewan T MacLeod
- Division of Infection and Pathway Medicine, Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK
| | | |
Collapse
|