1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Abstract
A phagemid is a plasmid that contains the origin of replication and packaging signal of a filamentous phage. Following bacterial transformation, a phagemid can be replicated and amplified as a plasmid, using a double-stranded DNA origin of replication, or it can be replicated as single-stranded DNA for packaging into filamentous phage particles. The use of phagemids enables phage display of large proteins, such as antibody fragments. Phagemid pComb3 was among the first phage display vectors used for the generation and selection of antibody libraries in the 50-kDa Fab format, a monovalent proxy of natural antibodies. Affording a robust and versatile tool for more than three decades, phage display vectors of the pComb3 phagemid family have been widely used for the discovery, affinity maturation, and humanization of antibodies in Fab, scFv, and single-domain formats from naive, immune, and synthetic antibody repertoires. In addition, they have been used for broadening phage display to the mining of nonimmunoglobulin repertoires. This review examines conceptual, functional, and molecular features of the first-generation phage display vector pComb3 and its successors, pComb3H, pComb3X, and pC3C.
Collapse
Affiliation(s)
- Christoph Rader
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, USA
| |
Collapse
|
3
|
Pękacz M, Basałaj K, Kalinowska A, Klockiewicz M, Stopka D, Bąska P, Długosz E, Karabowicz J, Młocicki D, Wiśniewski M, Zawistowska-Deniziak A. Selection of new diagnostic markers for Dirofilaria repens infections with the use of phage display technology. Sci Rep 2022; 12:2288. [PMID: 35145147 PMCID: PMC8831495 DOI: 10.1038/s41598-022-06116-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
Dirofilaria repens is a parasitic nematode causing vector-borne disease (dirofilariasis), considered an emerging problem in veterinary and human medicine. Although main hosts are carnivores, particularly dogs, D. repens shows high zoonotic potential. The disease spreads uncontrollably, affecting new areas. Since there is no vaccine against dirofilariasis, the only way to limit disease transmission is an early diagnosis. Currently, diagnosis depends on the detection of microfilariae in the host bloodstream using modified Knott's test or multiplex PCR. However, the efficacy of tests relying on microfilariae detection is limited by microfilariae periodic occurrence. Therefore, a new reliable diagnostic test is required. Our study aimed to select new diagnostic markers for dirofilariasis with potential application in diagnostics. We focused on single epitopes to ensure high specificity of diagnosis and avoid cross-reactivity with the other parasite infections common in dogs. Using phage display technology and 12-mer peptides library, we selected epitopes highly reactive with IgG from sera of infected dogs. Additionally, our study presents the possibility of detecting D. repens specific cell-free DNA in dogs with no microfilaria but high IgG and IgM antibody levels against parasite somatic antigen.
Collapse
Affiliation(s)
- Mateusz Pękacz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Klockiewicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Diana Stopka
- Division of Pathology, Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ewa Długosz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Justyna Karabowicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Daniel Młocicki
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | |
Collapse
|
4
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
5
|
Norbury LJ, Basałaj K, Bąska P, Zawistowska-Deniziak A, Kalinowska A, Wilkowski P, Wesołowska A, Wędrychowicz H. Generation of a single-chain variable fragment phage display antibody library from naïve mice panned against Fasciola hepatica antigens. Exp Parasitol 2019; 205:107737. [PMID: 31401060 DOI: 10.1016/j.exppara.2019.107737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Monoclonal antibodies have a wide range of applications in basic and applied research as well as in the medical and pharmaceutical industries. Phage display antibody libraries offer an alternative to hybridoma technology for the generation of monoclonal antibodies and can be applied to high-throughput screening and facilitate the generation of novel antibodies. Despite their utility in several fields of research there has been limited application of antibody libraries in the study of trematode parasites. Fasciola hepatica causes considerable loss to the agriculture sector and is also a human pathogen. The parasite's excretory/secretory material contains numerous molecules that facilitate its invasion and survival within the mammalian host, including cathepsin B and L proteases. F. hepatica cathepsin B2 is expressed during the initial weeks of infection and has suspected roles in immune evasion and as a digestive enzyme in the parasite's gut; it is considered a good target for vaccination or therapeutic inhibitors. In this study, we produced a single-chain variable fragment (scFv) phage display library from naïve mice. The library was used to identify several scFv that can bind to antigens from adult F. hepatica homogenate, and a scFv that can bind to F. hepatica cathepsin B2. The results highlight the potential applicability of such a library to facilitate the study of F. hepatica and other parasites. This is the first report of the application of a naïve phage display antibody library to the study of F. hepatica.
Collapse
Affiliation(s)
- Luke J Norbury
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Przemysław Wilkowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Agnieszka Wesołowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Halina Wędrychowicz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|