1
|
Pansuriya R, Doutch J, Parmar B, Kailasa SK, Mahmoudi N, Hoskins C, Malek NI. A bio-ionic liquid based self-healable and adhesive ionic hydrogel for the on-demand transdermal delivery of a chemotherapeutic drug. J Mater Chem B 2024; 12:5479-5495. [PMID: 38742683 DOI: 10.1039/d4tb00510d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The non-invasive nature and potential for sustained release make transdermal drug administration an appealing treatment option for cancer therapy. However, the strong barrier of the stratum corneum (SC) poses a challenge for the penetration of hydrophilic chemotherapy drugs such as 5-fluorouracil (5-FU). Due to its biocompatibility and capacity to increase drug solubility and permeability, especially when paired with chemical enhancers, such as oleic acid (OA), which is used in this work, choline glycinate ([Cho][Gly]) has emerged as a potential substance for transdermal drug delivery. In this work, we examined the possibility of transdermal delivery of 5-FU for the treatment of breast cancer using an ionic hydrogel formulation consisting of [Cho][Gly] with OA. Small angle neutron scattering, rheological analysis, field emission scanning electron microscopy, and dynamic light scattering analysis were used to characterize the ionic hydrogel. The non-covalent interactions present between [Cho][Gly] and OA were investigated by computational simulations and FTIR spectroscopy methods. When subjected to in vitro drug permeation using goat skin in a Franz diffusion cell, the hydrogel demonstrated sustained release of 5-FU and effective permeability in the order: [Cho][Gly]-OA gel > [Cho][Gly] > PBS (control). The hydrogel also demonstrated 92% cell viability after 48 hours for the human keratinocyte cell line (HaCaT cells) as well as the normal human cell line L-132. The breast cancer cell line MCF-7 and the cervical cancer cell line HeLa were used to study in vitro cytotoxicity that was considerably affected by the 5-FU-loaded hydrogel. These results indicate the potential of the hydrogel as a transdermal drug delivery vehicle for the treatment of breast cancer.
Collapse
Affiliation(s)
- Raviraj Pansuriya
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - James Doutch
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Bhagyesh Parmar
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - Suresh Kumar Kailasa
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - Najet Mahmoudi
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Clare Hoskins
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Naved I Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
2
|
Datta D, Noor A, Rathee A, Singh S, Kohli K. Hypothesizing the Oleic Acid-Mediated Enhanced and Sustained Transdermal Codelivery of Pregabalin and Diclofenac Adhesive Nanogel: A Proof of Concept. Curr Mol Med 2024; 24:1317-1328. [PMID: 38847251 DOI: 10.2174/0115665240291343240306054318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 10/19/2024]
Abstract
Pregabalin (PG) and diclofenac diethylamine (DEE) are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on in vitro studies. Pluronic organogel containing pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥120⁰, respectively. In vitro studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEEbased nanogel across the human skin can be achieved to inhibit inflammation and pain.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Afeefa Noor
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Anjali Rathee
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Snigdha Singh
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Kanchan Kohli
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.11, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Biocompatible Ionic Liquid-Mediated Micelles for Enhanced Transdermal Delivery of Paclitaxel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19745-19755. [PMID: 33891816 DOI: 10.1021/acsami.1c03111] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Islam MR, Chowdhury MR, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, Goto M. Choline and amino acid based biocompatible ionic liquid mediated transdermal delivery of the sparingly soluble drug acyclovir. Int J Pharm 2020; 582:119335. [DOI: 10.1016/j.ijpharm.2020.119335] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/28/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
|
5
|
Ionic Liquid-In-Oil Microemulsions Prepared with Biocompatible Choline Carboxylic Acids for Improving the Transdermal Delivery of a Sparingly Soluble Drug. Pharmaceutics 2020; 12:pharmaceutics12040392. [PMID: 32344768 PMCID: PMC7238071 DOI: 10.3390/pharmaceutics12040392] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
The transdermal delivery of sparingly soluble drugs is challenging due to of the need for a drug carrier. In the past few decades, ionic liquid (IL)-in-oil microemulsions (IL/O MEs) have been developed as potential carriers. By focusing on biocompatibility, we report on an IL/O ME that is designed to enhance the solubility and transdermal delivery of the sparingly soluble drug, acyclovir. The prepared MEs were composed of a hydrophilic IL (choline formate, choline lactate, or choline propionate) as the non-aqueous polar phase and a surface-active IL (choline oleate) as the surfactant in combination with sorbitan laurate in a continuous oil phase. The selected ILs were all biologically active ions. Optimized pseudo ternary phase diagrams indicated the MEs formed thermodynamically stable, spherically shaped, and nano-sized (<100 nm) droplets. An in vitro drug permeation study, using pig skin, showed the significantly enhanced permeation of acyclovir using the ME. A Fourier transform infrared spectroscopy study showed a reduction of the skin barrier function with the ME. Finally, a skin irritation study showed a high cell survival rate (>90%) with the ME compared with Dulbecco's phosphate-buffered saline, indicates the biocompatibility of the ME. Therefore, we conclude that IL/O ME may be a promising nano-carrier for the transdermal delivery of sparingly soluble drugs.
Collapse
|
6
|
Taktak F, Bütün V, Tuncer C, Demirel HH. Production of LMWH-conjugated core/shell hydrogels encapsulating paclitaxel for transdermal delivery: In vitro and in vivo assessment. Int J Biol Macromol 2019; 128:610-620. [PMID: 30708013 DOI: 10.1016/j.ijbiomac.2019.01.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 11/19/2022]
Abstract
Topical applications that reduce systemic toxic effects while increasing therapeutic efficacy are a promising alternative strategy. The aim of this study was to provide an enhanced transdermal delivery of low molecular weight heparin (LMWH) through the stratum corneum by using cationic carrier as a novel permeation enhancer. Recent studies have shown that heparin-conjugated biomaterials can be effective in inhibiting tumor growth during cancer treatment due to their high ability to bind growth factors. Paclitaxel (PCL) was co-encapsulated into the same cationic carrier for the purpose of improving of therapeutic efficacy for a combined cancer treatment with LMWH. In vitro and in vivo studies showed that the LMWH and PCL release was significantly affected by polymer molecular weight and block composition. Skin penetration tests have indicated that larger amounts of LMWH were absorbed from LMWH-gel conjugate through SC, than aqueous formula. However, it was found that the plasma transition of LMWH released from gel conjugate was lower compared to the plasma concentration of LMWH released from aqueous solution. It is recommended that PCL-loaded LMWH-conjugated core/shell hydrogels can be used as promising drug release systems for transdermal applications that can improve therapeutic efficacy and reduce side effects in a combined cancer treatment.
Collapse
Affiliation(s)
- Fulya Taktak
- Department of Chemical Engineering, Faculty of Engineering, Instutue of Natural and Applied Sciences, Department of Polymer Science and Technology, Uşak University, 64200 Uşak, Turkey.
| | - Vural Bütün
- Department of Chemistry, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
| | - Cansel Tuncer
- Department of Chemistry, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
| | - Hasan Hüseyin Demirel
- Bayat Vocational High School, Laboratory and Veterinary Health Program, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| |
Collapse
|
7
|
Effect of Isopropyl Myristate on Transdermal Permeation of Testosterone From Carbopol Gel. J Pharm Sci 2017; 106:1805-1813. [DOI: 10.1016/j.xphs.2017.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 11/23/2022]
|
8
|
Alsharif FM, Dave K, Samy AM, Saleh KI, Amin MA, Perumal O. Influence of Hydroalcoholic Vehicle on In Vitro Transport of 4-Hydroxy Tamoxifen Through the Mammary Papilla (Nipple). AAPS PharmSciTech 2017; 18:1366-1373. [PMID: 27506565 DOI: 10.1208/s12249-016-0608-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/28/2016] [Indexed: 01/29/2023] Open
Abstract
Majority of breast cancers originate from epithelial cells in the duct and lobules in the breast. Current systemic treatments for breast cancer are associated with significant systemic side effects, thus warranting localized drug delivery approaches. The aim of this study was to investigate the influence of hydroalcoholic vehicle on topical delivery of 4-hydroxy tamoxifen (4-HT) through the mammary papilla (nipple). The in vitro permeability of 4-HT through porcine mammary papilla was studied using different hydroalcoholic vehicles (0, 33.33, and 66.66% alcohol). Nile red was used as a model lipophilic dye to characterize the drug transport pathway in the mammary papilla. The penetration of 4-HT through the mammary papilla increased with increase in alcohol concentration in the vehicle. The solubility of 4-HT was enhanced by increasing alcohol concentration in the vehicle. On the other hand, the epidermis/vehicle partition coefficient decreased with increase in alcohol concentration. The mammary papilla served as a depot and slowly released 4-HT into the receptor medium. Highest drug penetration was observed with saturated drug solution in 66.66% alcohol, and 4-HT levels were comparable to IC50 value of 4-HT. Results from this study demonstrate the possibility of using mammary papilla as a potential route for direct delivery of 4-HT to the breast.
Collapse
|
9
|
Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. Transdermal permeation of Kaempferia parviflora methoxyflavones from isopropyl myristate-based vehicles. AAPS PharmSciTech 2014; 15:947-55. [PMID: 24789664 DOI: 10.1208/s12249-014-0122-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/01/2014] [Indexed: 11/30/2022] Open
Abstract
Kaempferia parviflora (K. parviflora) rhizomes have long been used in traditional folk medicines and as general health-promoting agents. Several biological activities of K. parviflora, especially its anti-inflammatory effect, are due to its major constituents, methoxyflavones. However, the oral bioavailability of these methoxyflavones has been shown to be low. The aim of this study was to investigate the permeation behaviors of K. parviflora methoxyflavones from isopropyl myristate (IPM)-based vehicles. We studied the effects of ethanol and propylene glycol (PG) as the hydrophilic, solvent-type vehicles as well as fatty acids as the permeation enhancers. A permeation experiment was performed in vitro, using side-by-side diffusion cells through the full thickness of pig ear skin. The solubility and permeation of methoxyflavones were able to be modified by choice and ratio of vehicles. The ethanol/IPM vehicle was shown to be more effective in enhancing the solubility and permeation of methoxyflavones when compared to the PG/IPM vehicle. Regarding an optimal balance between solubility or affinity to vehicle and skin to vehicle partition coefficient, the ethanol/IPM vehicle in the ratio of 1:9 maximized the flux. Among the investigated fatty acids, oleic acid showed the greatest enhancing effect on the permeation of methoxyflavones, indicating that saturated fatty acids are less effective than unsaturated fatty acids. Long chain fatty acids increased diffusion coefficient parameter and shortened the lag time. The number of carbon atoms and double bonds of fatty acids did not show direct relation to the profile of permeation of methoxyflavones.
Collapse
|
10
|
Reid ML, Benaouda F, Khengar R, Jones SA, Brown MB. Topical corticosteroid delivery into human skin using hydrofluoroalkane metered dose aerosol sprays. Int J Pharm 2013; 452:157-65. [DOI: 10.1016/j.ijpharm.2013.04.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/15/2013] [Accepted: 04/28/2013] [Indexed: 11/30/2022]
|
11
|
Cichewicz A, Pacleb C, Connors A, Hass MA, Lopes LB. Cutaneous delivery of α-tocopherol and lipoic acid using microemulsions: influence of composition and charge. ACTA ACUST UNITED AC 2013; 65:817-26. [PMID: 23647675 DOI: 10.1111/jphp.12045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/15/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To assess whether the composition and charge of microemulsions affect their ability to simultaneously deliver α-tocopherol and lipoic acid into viable skin layers. METHODS α-Tocopherol and lipoic acid were added (1.1 and 0.5% w/w, respectively) to decylglucoside-based microemulsions containing mono-dicaprylin. Microemulsions containing surfactant : oil : water (w/w/w) at 60 : 30 : 10 (ME-O) and 46 : 23 : 31 (ME-W), as well as a cationic form of ME-W containing 1% phytosphingosine (ME-Wphy) were characterized, and their ability to disrupt the skin barrier and deliver the antioxidants in vitro in the skin was evaluated. Antioxidant activity in ME-Wphy-treated skin was assessed using the thiobarbituric acid-reactive substances (TBARS) assay. KEY FINDINGS The internal phase diameters of microemulsions ranged between 42 and 55 nm; phytosphingosine addition and pH adjustment to 5.0 increased zeta potential from -4.3 to +29.1 mV. ME-O displayed w/o structure, whereas ME-W and ME-Wphy were consistent with o/w. Microemulsions affected skin electrical resistance and transepidermal water loss, but did not affect lipoic acid penetration. α-Tocopherol delivery increased following the order ME-O < ME-W < ME-Wphy. ME-Wphy presented suitable short-term stability. The antioxidants delivered by ME-Wphy decreased TBARS cutaneous levels. CONCLUSIONS Even though microemulsion structure only affected tocopherol penetration, delivered levels of both antioxidants were sufficient for a decrease in TBARS, supporting their use for enhanced protection.
Collapse
Affiliation(s)
- Allie Cichewicz
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
12
|
Pepe D, McCall M, Zheng H, Lopes LB. Protein transduction domain-containing microemulsions as cutaneous delivery systems for an anticancer agent. J Pharm Sci 2013; 102:1476-87. [PMID: 23436680 DOI: 10.1002/jps.23482] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/07/2022]
Abstract
In this study, we developed cationic microemulsions containing a protein transduction domain (penetratin) for optimizing paclitaxel localization within the skin. Microemulsions were prepared by mixing a surfactant blend (BRIJ:ethanol:propylene glycol 2:1:1, w/w/w) with monocaprylin (oil phase) at 1.3:1 ratio, and adding water at 30% (ME-30), 43% (ME-43), and 50% (ME-50). Electrical conductivity and viscosity measurements indicated that ME-30 is most likely a bicontinuous system, whereas ME-43 and ME-50 are water continuous. Their irritation potential, studied in bioengineered skin equivalents, decreased as aqueous content increased. Because ME-50 was not stable in the presence of paclitaxel (0.5%), ME-43 was selected for penetratin incorporation (0.4%). The microemulsion containing penetratin (ME-P) displayed zeta potential of +5.2 mV, and promoted a 1.8-fold increase in paclitaxel cutaneous (but not transdermal) delivery compared with the plain ME-43, whereas the enhancement promoted by another cationic microemulsion containing phytosphingosine was 1.3-fold. Compared with myvacet oil, ME-P promoted a larger increase on transepidermal water loss (twofold) than the plain or the phytosphingosine-containing microemulsions (1.5-fold), suggesting that penetratin addition increases the barrier-disrupting and penetration-enhancing effects of microemulsions. The ratio Δcutaneous/Δtransdermal delivery promoted by ME-P was the highest among the formulations, suggesting its potential for drug localization within cutaneous tumor lesions.
Collapse
Affiliation(s)
- Dominique Pepe
- Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
13
|
Lamellar liquid crystalline phases for cutaneous delivery of Paclitaxel: impact of the monoglyceride. Pharm Res 2012; 30:694-706. [PMID: 23135821 DOI: 10.1007/s11095-012-0908-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/11/2012] [Indexed: 01/01/2023]
Abstract
PURPOSE To develop liquid crystalline phases with monoglycerides, and assess whether the monoglyceride type favors cutaneous over transdermal paclitaxel delivery. METHODS BRIJ-based lamellar phases were prepared with 0.5% paclitaxel and 20% of either monocaprylin (LP-MC), monomyristolein (LP-MM) or monoolein (LP-MO). Skin electrical resistance, drug release and cutaneous delivery in vitro and in vivo were assessed. Viability of skin equivalents and release of IL-1α were assessed as indexes of irritation potential. RESULTS An inverse relationship between monoglyceride acyl chain length and amount of paclitaxel delivered was observed. Although the largest paclitaxel amounts were delivered by LP-MC, all formulations delivered higher levels of drug in the skin (56-64-fold) than across the tissue. The superiority of LP-MC seems related to a stronger decrease in skin resistance (as an index of permeability), and not to increased drug release. LP-MC displayed similar penetration-enhancing ability in vivo, and a much lower irritation potential than Triton-X100 (a moderate irritant), leading to 3-fold higher skin equivalent viability and release of 60-fold less IL-1α. CONCLUSIONS Even though LP-MC delivered the largest amounts of paclitaxel, all formulations provided similar cutaneous/transdermal delivery ratios, suggesting that changing the monoglyceride acyl chain length did not affect the balance between cutaneous and transdermal delivery.
Collapse
|
14
|
Effect of Vehicles on the Maximum Transepidermal Flux of Similar Size Phenolic Compounds. Pharm Res 2012; 30:32-40. [DOI: 10.1007/s11095-012-0846-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
15
|
Liu J, Wang Z, Liu C, Xi H, Li C, Chen Y, Sun L, Mu L, Fang L. Silicone adhesive, a better matrix for tolterodine patches—a research based onin vitro/in vivostudies. Drug Dev Ind Pharm 2011; 38:1008-14. [DOI: 10.3109/03639045.2011.637049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application. Int J Pharm 2011; 408:223-34. [DOI: 10.1016/j.ijpharm.2011.02.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/28/2011] [Accepted: 02/04/2011] [Indexed: 11/22/2022]
|
17
|
Utreja P, Jain S, Tiwary AK. Localized delivery of paclitaxel using elastic liposomes: Formulation development and evaluation. Drug Deliv 2011; 18:367-76. [DOI: 10.3109/10717544.2011.558527] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Furuishi T, Fukami T, Suzuki T, Takayama K, Tomono K. Synergistic Effect of Isopropyl Myristate and Glyceryl Monocaprylate on the Skin Permeation of Pentazocine. Biol Pharm Bull 2010; 33:294-300. [DOI: 10.1248/bpb.33.294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takayuki Furuishi
- Research Unit of Pharmaceutics, College of Pharmacy, Nihon University
| | - Toshiro Fukami
- Research Unit of Pharmaceutics, College of Pharmacy, Nihon University
| | - Toyofumi Suzuki
- Research Unit of Pharmaceutics, College of Pharmacy, Nihon University
| | | | - Kazuo Tomono
- Research Unit of Pharmaceutics, College of Pharmacy, Nihon University
| |
Collapse
|
19
|
Sun Y, Fang L, Zhu M, Li W, Meng P, Li L, He Z. A drug-in-adhesive transdermal patch for S-amlodipine free base: In vitro and in vivo characterization. Int J Pharm 2009; 382:165-71. [DOI: 10.1016/j.ijpharm.2009.08.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/24/2009] [Accepted: 08/23/2009] [Indexed: 10/20/2022]
|
20
|
Casiraghi A, Minghetti P, Cilurzo F, Selmin F, Gambaro V, Montanari L. The effects of excipients for topical preparations on the human skin permeability of terpinen-4-ol contained in Tea tree oil: infrared spectroscopic investigations. Pharm Dev Technol 2009; 15:545-52. [PMID: 19842911 DOI: 10.3109/10837450903338387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work aimed to evaluate the effect induced by excipients conventionally used for topical dosage forms, namely isopropyl myristate (IPM) or oleic acid (OA) or polyethylene glycol 400 (PEG400) or Transcutol (TR), on the human skin permeability of terpinen-4-ol (T4OL) contained in the pure Tea tree oil. The effect of such excipients was determined by evaluating the absorption of T4OL using human epidermis and the perturbation of the organization of stratum corneum by ATR-FTIR. Among the tested excipients OA enhanced the absorption of T4OL by perturbing the stratum corneum lipid barrier. Other excipients caused a weak enhancement effect and their use should be carefully monitored.
Collapse
Affiliation(s)
- Antonella Casiraghi
- Istituto di Chimica Farmaceutica e Tossicologica, Università degli Studi di Milano, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Lim PFC, Liu XY, Chan SY. A Review on Terpenes as Skin Penetration Enhancers in Transdermal Drug Delivery. JOURNAL OF ESSENTIAL OIL RESEARCH 2009. [DOI: 10.1080/10412905.2009.9700208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
El Maghraby GM, Alanazi FK, Alsarra IA. Transdermal Delivery of Tadalafil. I. Effect of Vehicles on Skin Permeation. Drug Dev Ind Pharm 2009; 35:329-36. [DOI: 10.1080/03639040802360494] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Liu P, Cettina M, Wong J. Effects of Isopropanol–Isopropyl Myristate Binary Enhancers on In Vitro Transport of Estradiol in Human Epidermis: A Mechanistic Evaluation. J Pharm Sci 2009; 98:565-72. [DOI: 10.1002/jps.21459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Inhibition of cholesterol transport into skin cells in cultures by phytosterol-loaded microemulsion. Chem Phys Lipids 2008; 153:109-18. [DOI: 10.1016/j.chemphyslip.2008.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/24/2008] [Accepted: 02/29/2008] [Indexed: 11/21/2022]
|
25
|
Effects of vehicles and enhancers on transdermal delivery of clebopride. Arch Pharm Res 2007; 30:1155-61. [DOI: 10.1007/bf02980252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Synergetic effects of isopropyl alcohol (IPA) and isopropyl myristate (IPM) on the permeation of betamethasone-17-valerate from semisolid Pharmacopoeia bases. J Drug Deliv Sci Technol 2007. [DOI: 10.1016/s1773-2247(07)50052-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|