1
|
Rodríguez-Jiménez JMDJ, Montalvo-González E, López-García UM, Barros-Castillo JC, Ragazzo-Sánchez JA, García-Magaña MDL. Guamara and Cocuixtle: Source of Proteases for the Transformation of Shrimp By-Products into Hydrolysates with Potential Application. BIOLOGY 2023; 12:biology12050753. [PMID: 37237565 DOI: 10.3390/biology12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.
Collapse
Affiliation(s)
- Juan Miguel de Jesús Rodríguez-Jiménez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Ulises Miguel López-García
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Julio César Barros-Castillo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic. Avenida Tecnológico 2595, Fracc. Lagos del Country, Tepic 63175, Nayarit, Mexico
| |
Collapse
|
2
|
Li Y, Zhang L, Liao M, Huang C, Gao J. Removal of Fluoride from Aqueous Solution Using Shrimp Shell Residue as a Biosorbent after Astaxanthin Recovery. Molecules 2023; 28:3897. [PMID: 37175306 PMCID: PMC10180352 DOI: 10.3390/molecules28093897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Natural astaxanthin has been widely used in the food, cosmetic, and medicine industries due to its exceptional biological activity. Shrimp shell is one of the primary natural biological sources of astaxanthin. However, after astaxanthin recovery, there is still a lot of chitin contained in the residues. In this study, the residue from shrimp (Penaeus vannamei) shells after astaxanthin extraction using ionic liquid (IL) 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) was used as a bioadsorbent to remove fluoride from the aqueous solution. The results show the IL extraction conditions, including the solid/liquid ratio, temperature, time, and particle size, all played important roles in the removal of fluoride by the shrimp shell residue. The shrimp shells treated using [Emim]Ac at 100 °C for 2 h exhibited an obvious porous structure, and the porosity showed a positive linear correlation with defluorination (DF, %). Moreover, the adsorption process of fluoride was nonspontaneous and endothermic, which fits well with both the pseudo-second-order and Langmuir models. The maximum adsorption capacity calculated according to the Langmuir model is 3.29 mg/g, which is better than most bioadsorbents. This study provides a low-cost and efficient method for the preparation of adsorbents from shrimp processing waste to remove fluoride from wastewater.
Collapse
Affiliation(s)
- Yan Li
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lili Zhang
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minru Liao
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chao Huang
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jing Gao
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
3
|
Pereira NDLÁ, Fangio MF, Rodriguez YE, Bonadero MC, Harán NS, Fernández‐Gimenez AV. Characterization of liquid protein hydrolysates shrimp industry waste: Analysis of antioxidant and microbiological activity, and shelf life of final product. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nair de Los Ángeles Pereira
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Mar del Plata Argentina
| | - María Florencia Fangio
- Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR) Facultad de Ciencias Exactas y Naturales (FCEyN) Universidad Nacional de Mar del Plata (UNMdP) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Mar del Plata Argentina
| | - Yamila Eliana Rodriguez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Mar del Plata Argentina
| | - Maria Cecilia Bonadero
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Mar del Plata Argentina
| | - Nora Selma Harán
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Mar del Plata Argentina
| | - Analía Verónica Fernández‐Gimenez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Mar del Plata Argentina
| |
Collapse
|
4
|
Huang CH, Lin CH, Huang HH, Tsai GJ. Development of Fermented Shrimp Shell Product with Hypoglycemic and Hypolipidemic Effects on Diabetic Rats. Metabolites 2022; 12:metabo12080695. [PMID: 35893262 PMCID: PMC9332839 DOI: 10.3390/metabo12080695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
In 2020, approximately 9.3 billion tons of crustaceans were consumed, and 45–48% of shrimp shell (SS) by-products were discarded as waste. In this study, the SS of Litopenaeus vannamei was fermented by Lactobacillus plantarum LV33204, Stenotrophomonas maltophilia LV2122 (strong proteolytic activity), and Aeromonas dhakensis LV1111 (chitin-degrading activity), and the optimal fermentation conditions of liquid-fermented SS was established. Contents of total peptide, astaxanthin, and total phenolic content of the fermented SS were significantly higher than that of unfermented SS. In the presence of fermented SS, glucose uptake and insulin resistance of TNF-α-stimulated FL83B hepatocytes were markedly improved. Furthermore, daily oral supplement of fermented SS to streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats for 7 weeks significantly reduced plasma glucose and insulin resistance. Meanwhile, ingestion of fermented SS might enhance hepatic catabolism of glucose by increasing hexokinase and glucose-6-phosphate dehydrogenase activity and decreasing glucose-6-phosphatase activity. In addition, the fermented SS downregulated plasma total cholesterol (TG), triglycerides (TCs), low-density lipoprotein cholesterol (LDL-C), liver TG, and TC and lipid peroxidation levels in diabetic rats. In conclusion, a biorefinery process for waste SS was established through mixed strain fermentation. The in vitro and in vivo data reveal that the fermented SS is a promising functional food for the management of diabetic hyperglycemia and hyperlipidemia.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Chih-Heng Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Hsiao-Han Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Guo-Jane Tsai
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Reguengo LM, Salgaço MK, Sivieri K, Maróstica Júnior MR. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res Int 2022; 152:110871. [DOI: 10.1016/j.foodres.2021.110871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/04/2022]
|
6
|
Setthaya P, Jaturasitha S, Ketnawa S, Chaiyaso T, Sato K, Wongpoomchai R. Influence of Commercial Protease and Drying Process on Antioxidant and Physicochemical Properties of Chicken Breast Protein Hydrolysates. Foods 2021; 10:2994. [PMID: 34945544 PMCID: PMC8700794 DOI: 10.3390/foods10122994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Different proteases can be applied to produce certain bioactive peptides. This study focused on the effects of some commercial proteases and drying processes on the physical, chemical, and biological properties of chicken breast hydrolysates (CBH). Chicken breast hydrolyzed with Alcalase® presented a higher degree of hydrolysis (DH) than papain. Moreover, the treatment with Alcalase®, followed by papain (A-P), was more proficient in producing antioxidant activities than a single enzyme treatment. Conditions comprising 0.63% Alcalase® (w/w) at pH 8.0 and 52.5 °C for 3 h, followed by 0.13% papain (w/w) at pH 6.0 and 37 °C for 3 h, resulted in the highest yields of DH and peptide contents. The spray-dried microencapsulated powder improved the physicochemical properties including moisture content, color measurement, solubility, and particle morphology. In summary, the dual enzyme application involving the hydrolysis of Alcalase® and papain, coupled with the spray-drying process, could be used to produced antioxidant CBH.
Collapse
Affiliation(s)
- Phatthawin Setthaya
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (S.K.)
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sunantha Ketnawa
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (S.K.)
| | - Thanongsak Chaiyaso
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (S.K.)
| |
Collapse
|
7
|
Protein Hydrolysis and Glycosylation as Strategies to Produce Bioactive Ingredients from Unmarketable Prawns. Foods 2021; 10:foods10112844. [PMID: 34829125 PMCID: PMC8625146 DOI: 10.3390/foods10112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
The present work shows a procedure to valorize non-commercial boiled shrimp to produce functional ingredients, using a combined treatment based on enzymatic hydrolysis and subsequent glycation under mild conditions. Antioxidant and prolyl endopeptidase-inhibiting activities were determined as a function of hydrolysis and glycation times (0-120 min and 0-180 min, respectively). The reaction products were characterized by determining the degree of hydrolysis, browning, fluorescent compounds, free amino acids, phenol content, Fourier transform infrared spectroscopy (FTIR), and molecular weight of the different fractions obtained. Enzymatic hydrolysis generated hydrolysates with significant antioxidant and prolyl endopeptidase-inhibiting activities. Glycation under mild conditions was used as a strategy to improve the antioxidant and potential nootropic properties of the hydrolysates. During glycation, the free amino acid content decreased, total phenols and fluorescent compounds increased significantly, and low molecular weight melanoidins were formed. The presence of peptide-glucose conjugates was also confirmed by FTIR. Glycation increased the antioxidant activities of the hydrolysates; however, their prolyl-endopeptidase-inhibiting activity was lost. Results showed that compounds with promising antioxidant (hydrolysis and glycation) and potential nootropic (hydrolysis) activities and applications in food systems were obtained from the biotechnological strategy used.
Collapse
|
8
|
Carranza-Saavedra D, Zapata-Montoya JE, Váquiro-Herrera HA, Solanilla-Duque JF. Study of biological activities and physicochemical properties of Yamú (Brycon siebenthalae) viscera hydrolysates in sodium alginate-based edible coating solutions. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The fishing industry produces waste such as viscera, which is an environmental problem for many countries. Obtaining protein from these wastes are useful for the food industry. In this study, the chemical composition, amino acid profile, solubility, digestibility and thermal properties of Yamú protein isolate (PI) and its hydrolysates obtained by enzymatic hydrolysis were characterized. The hydrolysates (0.05, 0.1, 0.5, 1 and 2% w/v) were mixed with a sodium alginate-based solution to form an edible coating solution (ECS). Antioxidant capacity antimicrobial activity, Zeta potential (ζ) and adsorption kinetics properties were determined. PI contains 88% (w/w) protein showing better solubility, digestibility and thermal stability properties. The hydrolysate concentrations with DPPH inhibitory ECS were 0.1 and 0.5% (w/v). The kinetic properties of ECS showed good stability and excellent adsorption. These results suggest that this Yamú protein has high nutritional potential as an ingredient for the production of functional foods.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - José Edgar Zapata-Montoya
- Grupo de investigación en Nutrición y Tecnología de Alimentos (Nutec), Universidad de Antioquia , Medellín 050010 , Colombia
| | - Henry Alexander Váquiro-Herrera
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
| | - José Fernando Solanilla-Duque
- Grupo de investigación Centro de desarrollo agroindustrial del Tolima (CEDAGRITOL), Universidad Del Tolima , Ibagué 730006299 , Colombia
- Departamento de Agroindustria , Facultad de Ciencias Agrarias, Universidad del Cauca , Popayán 190001 , Colombia
| |
Collapse
|
9
|
Conception of active food packaging films based on crab chitosan and gelatin enriched with crustacean protein hydrolysates with improved functional and biological properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
|
11
|
Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
|
13
|
Ling JG, Xuan XT, Yu N, Cui Y, Shang HT, Liao XJ, Lin XD, Yu JF, Liu DH. High pressure-assisted vacuum-freeze drying: A novel, efficient way to accelerate moisture migration in shrimp processing. J Food Sci 2020; 85:1167-1176. [PMID: 32275070 DOI: 10.1111/1750-3841.15027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 11/28/2022]
Abstract
High pressure processing (HPP), as nonthermal processing technology, has the potential to increase the drying rate due to its improvement of heat and mass exchange in different processes. In this study, the moisture migration in shrimps during HPP-vacuum-freeze drying (HPP-VFD) processes has been monitored by using low-field nuclear magnetic resonance and magnetic resonance image (MRI) in comparison with hot air-drying and VFD. Based on the T2 relaxation spectra, three water fractions corresponding to bound water (hydrogen-bonded water), immobile water (water trapped by organization structure or cell member), and free water were observed. For group B, with increasing drying time (4 to 22 hr), the transverse relaxation times of T21 , T22 , and T23 were significantly decreased (76.79%, 57.78%, and 40.9%) (P < 0.05). The content of immobile water (A22 ) and free water (A23 ) decreased (81.55% and 89.07%), whereas the bound water (A21 ) increased (7.26%). In comparison with group B, the T21 , T22 , and T23 of group C showed greater decrease (83.12%, 87.12%, and 89.57% for group C) so that HPP pretreatment could shorten the relaxation time. MRI analysis further proved that HPP-VFD drying has improved drying efficiency, and moisture migration was from the exterior to the interior part with increasing drying time. SEM analysis demonstrated that no significant damage of muscle fibers with narrower gaps was observed for groups B and C. Overall, HPP, as a pretreatment technology, could accelerate the moisture migration and improve the drying efficiency of VFD process for shrimp. PRACTICAL APPLICATION: High pressure processing (HPP) is now well known as a nonthermal processing technology and becoming increasingly acknowledged. However, there is limited information about its application in shrimp-drying process and the moisture dynamic of shrimp subjected to high pressure processing-assisted vacuum-freeze drying. This study could provide valuable information regarding the moisture status and migration in HPP-VFD shrimp monitored by LF-NMR and MRI methods. The results showed that HPP processing at 550 MPa for 10 min can be used as an interesting method for drying pretreatment, increasing its drying rate and consequently reducing its process time, and it demonstrated that the methods used in this study had good correlation coefficient with physicochemical properties of shrimp, which may be real-time and nondestructive monitoring methods for shrimp-drying process.
Collapse
Affiliation(s)
- Jian-Gang Ling
- College of Biosystems Engineering and Food Science, Natl.-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China.,Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, 315040, China
| | - Xiao-Ting Xuan
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, 315040, China
| | - Ning Yu
- Key Laboratory of Healthy & Intelligent Kitchen System Integration, Ningbo Fotile Kitchen Ware Co., Ltd., Ningbo, 315336, PR China
| | - Yan Cui
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, 315040, China
| | - Hai-Tao Shang
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, 315040, China
| | - Xiao-Jun Liao
- College of Food Science and Nutritional Engineering, China Agricultural Univ., Beijing, 100083, China
| | - Xu-Dong Lin
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, 315040, China
| | - Jing-Feng Yu
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, 315040, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Natl.-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Univ., Hangzhou, 310058, China.,Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang, 315040, China
| |
Collapse
|
14
|
Hamdi M, Nasri R, Li S, Nasri M. Design of blue crab chitosan responsive nanoparticles as controlled-release nanocarrier: Physicochemical features, thermal stability and in vitro pH-dependent delivery properties. Int J Biol Macromol 2020; 145:1140-1154. [DOI: 10.1016/j.ijbiomac.2019.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022]
|
15
|
Tremblay A, Corcuff R, Goulet C, Godefroy SB, Doyen A, Beaulieu L. Valorization of snow crab (Chionoecetes opilio) cooking effluents for food applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:384-393. [PMID: 31595518 DOI: 10.1002/jsfa.10066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Seafood processing generates significant amounts of solid and liquid waste in the environment. Such waste represents a potential source of high-value biomolecules for food, pharmaceutic and cosmetic applications. There are very few studies on the valorization of wastewaters compared to solid by-products. However, cooking waters are characterized by a high organic polluting load, which could contain valuable molecules such as proteins, pigments and flavor compounds. Snow crab (Chionoecetes opilio) processing is included among the most important processes in Canadian fisheries, although its cooking effluent composition is not well characterized. RESULTS The present study concentrated and valorized the biomass in snow crab cooking wastewaters for the development of products for food applications. A membrane process was designed and optimized to concentrate the effluents. The chemical composition of the concentrates was analyzed, including characterizing the flavor profile compounds. The extracts were mainly composed of proteins (592 g kg-1 ) and minerals (386 g kg-1 ) and contained desirable flavor compounds. Their functional properties (solubility, water-holding capacity, oil-holding capacity) and antioxidant activities were also assessed, and their safety was verified. CONCLUSION The cooking effluents generated by snow crab processing facilities, usually considered as waste, can be concentrated and turned into a natural aroma for the food industry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ariane Tremblay
- Département des sciences des aliments, Université Laval, Institut sur la nutrition et les aliments fonctionnels, Pavillon Paul-Comtois, QC, Canada
| | - Ronan Corcuff
- Département des sciences des aliments, Université Laval, Institut sur la nutrition et les aliments fonctionnels, Pavillon Paul-Comtois, QC, Canada
| | - Charles Goulet
- Département de phytologie, Université Laval, Pavillon de l'Envirotron, QC, Canada
| | - Samuel B Godefroy
- Département des sciences des aliments, Université Laval, Institut sur la nutrition et les aliments fonctionnels, Pavillon Paul-Comtois, QC, Canada
| | - Alain Doyen
- Département des sciences des aliments, Université Laval, Institut sur la nutrition et les aliments fonctionnels, Pavillon Paul-Comtois, QC, Canada
| | - Lucie Beaulieu
- Département des sciences des aliments, Université Laval, Institut sur la nutrition et les aliments fonctionnels, Pavillon Paul-Comtois, QC, Canada
| |
Collapse
|
16
|
Hamdi M, Nasri R, Dridi N, Li S, Nasri M. Development of novel high-selective extraction approach of carotenoproteins from blue crab (Portunus segnis) shells, contribution to the qualitative analysis of bioactive compounds by HR-ESI-MS. Food Chem 2020; 302:125334. [DOI: 10.1016/j.foodchem.2019.125334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
17
|
Hamdi M, Nasri R, Li S, Nasri M. Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Montero P, Mosquera M, Marín-Peñalver D, Alemán A, Martínez-Álvarez Ó, Gómez-Guillén MC. Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Yuan G, Li W, Pan Y, Wang C, Chen H. Shrimp shell wastes: Optimization of peptide hydrolysis and peptide inhibition of α-amylase. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Effects of different heating methods on the contents of nucleotides and related compounds in minced Pacific white shrimp and Antarctic krill. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.08.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|