1
|
Cholidis P, Kranas D, Chira A, Galouni EA, Adamantidi T, Anastasiadou C, Tsoupras A. Shrimp Lipid Bioactives with Anti-Inflammatory, Antithrombotic, and Antioxidant Health-Promoting Properties for Cardio-Protection. Mar Drugs 2024; 22:554. [PMID: 39728129 DOI: 10.3390/md22120554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more. The various health-promoting effects deriving from the consumption of shrimp lipid bioactives and the usage of products containing shrimp lipid extracts are also addressed in this study, through the exploration of several mechanisms of action and the interference of shrimp lipids in these biochemical pathways. Nevertheless, further research on this cultivatable edible species is needed, due to their existing limitations and future prospects which are discussed in this paper.
Collapse
Affiliation(s)
- Paschalis Cholidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Dimitrios Kranas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Aggeliki Chira
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Evangelia Aikaterini Galouni
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| |
Collapse
|
2
|
Chanted J, Anantawat V, Wongnen C, Aewsiri T, Panpipat W, Panya A, Phonsatta N, Cheong LZ, Chaijan M. Valorization of Pig Brains for Prime Quality Oil: A Comparative Evaluation of Organic-Solvent-Based and Solvent-Free Extractions. Foods 2024; 13:2818. [PMID: 39272583 PMCID: PMC11394771 DOI: 10.3390/foods13172818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Pig processing industries have produced large quantities of by-products, which have either been discarded or used to make low-value products. This study aimed to provide recommendations for manufacturing edible oil from pig brains, thereby increasing the value of pork by-products. The experiment compared non-solvent extraction methods, specifically wet rendering and aqueous saline, to a standard solvent extraction method, the Bligh and Dyer method, for extracting oil from pig brains. The yield, color, fatty acid profile, a number of lipid classes, and lipid stability against lipolysis and oxidation of the pig brain oil were comprehensively compared, and the results revealed that these parameters varied depending on the extraction method. The wet rendering process provided the highest extracted oil yield (~13%), followed by the Bligh and Dyer method (~7%) and the aqueous saline method (~2.5%). The Bligh and Dyer method and wet rendering techniques produced a translucent yellow oil; however, an opaque light-brown-red oil was found in the aqueous saline method. The Bligh and Dyer method yielded the oil with the highest phospholipid, cholesterol, carotenoid, tocopherol, and free fatty acid contents (p < 0.05). Although the Bligh and Dyer method recovered the most unsaturated fatty acids, it also recovered more trans-fatty acids. Aqueous saline and wet rendering procedures yielded oil with low FFA levels (<1 g/100 g). The PV of the oil extracted using all methods was <1 meq/kg; however, the Bligh and Dyer method had a significant TBARS content (7.85 mg MDA equivalent/kg) compared to aqueous saline (1.75 mg MDA equivalent/kg) and wet rendering (1.14 mg MDA equivalent/kg) (p < 0.05). FTIR spectra of the pig brain oil revealed the presence of multiple components in varying quantities, as determined by chemical analysis experiments. Given the higher yield and lipid stability and the lower cholesterol and trans-fatty acid content, wet rendering can be regarded as a simple and environmentally friendly method for safely extracting quality edible oil from pig brains, which may play an important role in obtaining financial benefits, nutrition, the zero-waste approach, and increasing the utilization of by-products in the meat industry.
Collapse
Affiliation(s)
- Jaruwan Chanted
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Visaka Anantawat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chantira Wongnen
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tanong Aewsiri
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Ling-Zhi Cheong
- School of Agriculture and Food, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
3
|
Chumthong K, Saelee N, Panpipat W, Panya A, Phonsatta N, Thangvichien S, Mala-in W, Grossmann L, Chaijan M. Utilizing the pH-Shift Method for Isolation and Nutritional Characterization of Mantis Shrimp ( Oratosquilla nepa) Protein: A Strategy for Developing Value-Added Ingredients. Foods 2024; 13:2312. [PMID: 39123504 PMCID: PMC11311506 DOI: 10.3390/foods13152312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This study focused on the production of protein isolates from mantis shrimp (MS). The pH-shift method was investigated to understand its impact on the protein yield, quality, and properties of the produced isolates. The first step was determining how the pH affected the protein solubility profile, zeta potential, and brown discoloration. The pH-shift process was then established based on the maximum and minimum protein solubilization. The solubilization pH had a significant impact on the mass yield and color of the produced protein, with a pH of 1.0 producing the maximum mass in the acidic region, whereas a maximum was found at a pH of 12.0 in the alkaline region (p < 0.05). Both approaches yielded mantis shrimp protein isolates (MPIs) with precipitation at a pH of 4.0 and a mass yield of around 25% (dw). The TCA-soluble peptide and TBARS levels were significantly lower in the MPI samples compared to MS raw material (p < 0.05). The MPIs maintained essential amino acid index (EAAI) values greater than 90%, indicating a high protein quality, and the pH-shift procedure had no negative impact on the protein quality, as indicated by comparable EAAI values between the mantis shrimp protein isolate extract acid (MPI-Ac), mantis shrimp protein isolate extract alkaline (MPI-Al), and MS raw material. Overall, the pH-shift approach effectively produced protein isolates with favorable quality and nutritional attributes.
Collapse
Affiliation(s)
- Kanchanaphon Chumthong
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (K.C.); (N.S.); (W.P.)
| | - Nisa Saelee
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (K.C.); (N.S.); (W.P.)
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (K.C.); (N.S.); (W.P.)
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand; (A.P.); (N.P.); (S.T.); (W.M.-i.)
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand; (A.P.); (N.P.); (S.T.); (W.M.-i.)
| | - Sujichon Thangvichien
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand; (A.P.); (N.P.); (S.T.); (W.M.-i.)
| | - Wannasa Mala-in
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Bangkok 12120, Thailand; (A.P.); (N.P.); (S.T.); (W.M.-i.)
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01003, USA;
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (K.C.); (N.S.); (W.P.)
| |
Collapse
|
4
|
Zhu K, Yan W, Dai Z, Zhang Y. Astaxanthin Extract from Shrimp ( Trachypenaeus curvirostris) By-Products Improves Quality of Ready-to-Cook Shrimp Surimi Products during Frozen Storage at -18 °C. Foods 2022; 11:foods11142122. [PMID: 35885365 PMCID: PMC9323547 DOI: 10.3390/foods11142122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
The effects of astaxanthin extract (AE) from shrimp by-products on the quality and sensory properties of ready-to-cook shrimp surimi products (RC-SSP) during frozen storage at −18 °C were investigated. Changes in 2-thiobarbituric acid reactive substances (TBARS) value, sulfhydryl groups, carbonyls, salt-soluble protein content, textural properties, color, and sensory quality over specific storage days were evaluated. The AE from shrimp by-products contained 4.49 μg/g tocopherol and 23.23 μg/g astaxanthin. The shrimp surimi products supplemented with 30 g/kg AE had higher redness values and greater overall acceptability and texture properties after cooking (p < 0.05). AE showed higher oxidative stability in RC-SSP than the control, as evidenced by lower TBARS and carbonyl content, and higher sulfhydryl and salt-soluble protein content. AE from shrimp by-products had positive effects on the antioxidant activity and color difference of RC-SSP, and could be used as a potential multifunctional additive for the development of shrimp surimi products.
Collapse
|
5
|
Chaijan M, Rodsamai T, Charoenlappanit S, Roytrakul S, Panya A, Phonsatta N, Cheong L, Panpipat W. Antioxidant activity and stability of endogenous peptides from farmed hybrid catfish (
Clarias macrocephalus
×
Clarias gariepinus
) muscle. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Thasala Nakhon Si Thammarat 80161 Thailand
| | - Tanutchaporn Rodsamai
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Thasala Nakhon Si Thammarat 80161 Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Phaholyothin Rd, Khlong Nueng Khlong Luang Pathumthani 12120 Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Phaholyothin Rd, Khlong Nueng Khlong Luang Pathumthani 12120 Thailand
| | - Atikorn Panya
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Phaholyothin Rd, Khlong Nueng Khlong Luang Pathumthani 12120 Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park, Phaholyothin Rd, Khlong Nueng Khlong Luang Pathumthani 12120 Thailand
| | - Ling‐Zhi Cheong
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Thasala Nakhon Si Thammarat 80161 Thailand
| |
Collapse
|
6
|
Characterization of Antioxidant Peptides from Thai Traditional Semi-Dried Fermented Catfish. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, the antioxidant peptides from a Thai traditional semi-dried fermented farmed hybrid catfish (Clarias macrocephalus × Clarias gariepinus) catfish, Pla Duk Ra, were characterized. After extraction and deproteinization, Pla Duk Ra crude peptide extract (CPE) was fractioned using 2 connected Hitrap Sephadex-G25 columns, yielding two significant fractions, F1 with higher browning intensity (A420) and F2. CPE, F1, and F2 had different amino acid profiles, contents, and sequences evaluated by LC-MS/MS, which could be responsible for their antioxidant properties. F2 contained the highest numbers of hydrophobic amino acid (HBA) (47.45%) and aromatic amino acid (27.31%), followed by F1, and CPE. The peptides with 8–24 amino acid residues were detected in CPE and its fractions. In CPE, F1, and F2, there were 69, 68, and 85 peptides with varied HBA content, respectively. ARHSYGMLYCSCPPND (50% HBA), ALRKMGRK (37.5% HBA), and ANWMIPLM (87.5% HBA) were the most prevalent peptides found in CPE, F1, and F2. Overall, F2 was the most effective at inhibiting free radicals (DPPH● and ABTS●+) and reactive oxygen species (hydroxyl radical, singlet oxygen, and hydrogen peroxide), followed by F1 and CPE. The metal chelation of F1 was, however, superior to that of F2 and CPE. For the stability test, the effects of pH, heating temperature, and in vitro digestion on the DPPH● scavenging activity of F2 were investigated. The activity was boosted by lowering the pH and raising the heating temperature. In the gastrointestinal tract model system, however, roughly 50% of DPPH● scavenging activity reduced after digesting.
Collapse
|
7
|
|
8
|
Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests. Food Chem 2020; 339:128157. [PMID: 33152897 DOI: 10.1016/j.foodchem.2020.128157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/22/2023]
Abstract
The effects of water soluble antioxidant (ascorbic acid and EDTA), fat soluble antioxidant (α-tocopherol) and amphiphilic antioxidant (ascorbyl palmitate; AP) on the chemical physics and bioaccessibility of β-carotene loaded nanoemulsions (CNE) were investigated. During accelerated storage at 45 °C for 15 days, AP showed the highest protective actions against particle size growth, color fading, lipid oxidation, and β-carotene degradation in CNE (p < 0.05). CNE with AP was then subjected to treat with cold plasma (CP) induced reactive species system under various powers and contact times compared to control. AP was able to protect physical and oxidative stabilities of CNE as well as β-carotene integrity. The highest in vitro lipid digestibility, bioaccessibility and β-carotene stability were found in CNE with AP (p < 0.05). However, those properties were lowered after CP exposure. The results indicated that AP was a promising antioxidant in improving physical stability, oxidative stability, β-carotene retention, and β-carotene bioaccessibility of CNE.
Collapse
|
9
|
Farm-raised sago palm weevil (Rhynchophorus ferrugineus) larvae: Potential and challenges for promising source of nutrients. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Zheng X, Xie X, Liu Y, Cong J, Fan J, Fang Y, Liu N, He Z, Liu J. Deciphering the mechanism of carbon sources inhibiting recolorization in the removal of refractory dye: Based on an untargeted LC-MS metabolomics approach. BIORESOURCE TECHNOLOGY 2020; 307:123248. [PMID: 32248066 DOI: 10.1016/j.biortech.2020.123248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, the biological decolorization of reactive black 5 (RB5) by Klebsiella sp. KL-1 in yeast extract (YE) medium was captured the recolorization after exposure to O2, which induced a 15.82% reduction in decolorization efficiency. Similar result was also observed in YE + lactose medium, but not in YE + glucose/xylose media (groups YE + Glu/Xyl). Through biodegradation studies, several degradation intermediates without quinoid structure were produced in groups YE + Glu/Xyl and differential degradation pathways were deduced in diverse groups. Metabolomics analysis revealed significant variations in up-/down-regulated metabolites using RB5 and different carbon sources. Moreover, the underlying mechanism of recolorization inhibition was proposed. Elevated reducing power associated with variable metabolites (2-hydroxyhexadecanoic acid, 9(R)-HODE cholesteryl ester, linoleamide, oleamide) rendered additional reductive cleavage of C-N bond on naphthalene ring. This study provided a new orientation to inhibit recolorization and deepened the understanding of the molecular mechanism of carbon sources inhibiting recolorization in the removal of refractory dyes.
Collapse
Affiliation(s)
- Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiao Fan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingrong Fang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
11
|
Rashed MMA, Mahdi AA, Ghaleb ADS, Zhang FR, YongHua D, Qin W, WanHai Z. Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int J Biol Macromol 2020; 151:702-712. [PMID: 32092424 DOI: 10.1016/j.ijbiomac.2020.02.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022]
Abstract
This investigation aims to evaluate the synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier (RBD-SFO), and high-energy microfluidization in synergy with the ultrasonic techniques in fabricating of Lavandula angustifolia essential oil (LAF-EO) nanoparticle. GC-MS and SEM techniques were employed to investigate the LAF-EO isolation method used. DLS analysis was employed along with CLSM and TEM techniques to investigate the physicochemical properties of nanoemulsion formulation (NE) matrices. The NE achieved the optimal spherical and size distributions of droplets (125.7 nm), Poly Dispersity Index (PdI) (0.183), and ζ-potential (-40.3 mV) when the contents of the formulation matrix were as follows: OSA-MS (2%), LAF-EO (1%), RBD-SFO (1%), and Tween-80 (1%). The findings of this work provide a new concept about the synergistic effects of amorphous OSA-modified starch and unsaturated lipid carrier as safe-grade macromolecules in the fabricating of LAF-EO nanoparticles. Besides, the application of the ultrasound cavitation phenomenon has been shown to have effective effect in reducing the droplet hydrodynamic diameter along with enhancing the distribution (PdI) and electrokinetic potential of the LAF-EO nanoparticles.
Collapse
Affiliation(s)
- Marwan M A Rashed
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China.
| | - Amer Ali Mahdi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, Jiangsu Province, China
| | - Abduljalil D S Ghaleb
- Faculty of Applied and Medical Science, AL-Razi University, Al-Rebatt St., Sana'a, Yemen
| | - Feng Rui Zhang
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Du YongHua
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China
| | - Wei Qin
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| | - Zhou WanHai
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, College of Life Science & Food Engineering, Yibin University, 8 Jiusheng Road Wuliangye Avenue, Yibin, 644000, Sichuan Province, China.
| |
Collapse
|