1
|
Cheng Y, Wu R, Xiao D, Wang Z, Chen Q, Zeng M, Qin F, Chen J, He Z. Improved encapsulation efficiency and storage stability of lutein by soy protein isolate nanocarriers with thermal and trypsin treatments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1057-1068. [PMID: 39268595 DOI: 10.1002/jsfa.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/31/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Encapsulation of bioactive compounds within protein-based nanoparticles has garnered considerable attention in the food and pharmaceutical industries because of its potential to enhance stability and delivery. Soy protein isolate (SPI) has emerged as a promising candidate, prompting the present study aiming to modify its properties through controlled thermal and trypsin treatments for improved encapsulation efficiency (EE) of lutein and its storage stability. RESULTS The EE of lutein nanoparticles encapsulated using SPI trypsin hydrolysates (SPIT) with three varying degrees of hydrolysis (4.11%, 6.91% and 10.61% for SPIT1, SPIT2 and SPIT3, respectively) increased by 12.00%, 15.78% and 18.59%, respectively, compared to SPI. Additionally, the photostability of SPIT2 showed a remarkable increase of 38.21% compared to SPI. The superior encapsulation efficiency and photostability of SPIT2 was attributed to increased exposure of hydrophobic groups, excellent antioxidant activity and uniform particle stability, despite exhibiting lower binding affinity to lutein compared to SPI. Furthermore, in SPIT2, the protein structure unfolded, with minimal impact on overall secondary structure upon lutein addition. CONCLUSION The precise application of controlled thermal and trypsin treatments to SPI has been shown to effectively produce protein nanoparticles with substantially improved encapsulation efficiency for lutein and enhanced storage stability of the encapsulated lutein. These findings underscore the potential of controlled thermal and trypsin treatments to modify protein properties effectively and offer significant opportunities for expanding the applications of protein-based formulations across diverse fields. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Renyi Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Dong Xiao
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Song H, Duan L, Ren S, Wang X, Feng Z, Shen J, Wang C, Guan X. Development of barley proteins into peptides nanomicelles for encapsulation of hydrophobic bioactive ingredient. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1356-1364. [PMID: 39311215 DOI: 10.1002/jsfa.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND As natural polymer materials, barley proteins have been utilized to fabricate nanocarriers to encapsulate and delivery hydrophobic bioactive ingredients. However, as a result of the high proportion of hydrophobic amino acids and structural rigidity, barley protein-based nanocarriers tend to aggregate easily and have a low loading capacity, which greatly limits their application. In the present study, barley proteins were enzymolyzed to fabricate nanomicelles and then applied to encapsulate hydrophobic bioactive ingredient. RESULTS Self-assembled barley peptides could be obtained by controllable enzymolysis of barley proteins. The obtained barley peptides could self-assemble into nanomicelles (BPNMs) with a diameter of approximately 90 nm when the concentration was > 2.1 μg mL-1. Hydrophobic interaction, disulfide bonds and hydrogen bonds were involved in maintaining the structure of BPNMs. Six self-assembled peptides (QQPFPQ, QTPLPQ, QLPQIPE, QPFPQQPQLPH, QPFPQQPPFGL and QPFPQQPPFWQQQ) were identified and they were characterized by alternating arrangement of hydrophobic amino acids and hydrophilic amino acids. Moreover, BPNMs were utilized to encapsulate hydrophobic bioactive ingredient quercetin. When quercetin was encapsulated by BPNMs, its water solubility was significantly increased, being approximately 30-fold higher than free quercetin. Meanwhile, encapsulation of BPNMs could greatly increase quercetin stability. The interaction between BPNMs and quercetin occurred spontaneously, mainly driven by van der Waals forces and hydrogen bonds. CONCLUSION In the present study, BPNMs were successfully developed and could be used as a promising delivery system to improve the water solubility and stability of hydrophobic bioactive ingredients. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Longhuan Duan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shaoxia Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhongyang Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianhua Shen
- Shanghai Tramy Green Food (Group) Co., Ltd, Shanghai, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
3
|
Fernandes R, Souza FO, Sobral DO, Dos Santos TLO, Meireles MAA, Batista EAC, Mamede AMGN. Conilon coffee: A critical review and bibliometric analysis for the agri-food industry. Food Res Int 2024; 197:115284. [PMID: 39577935 DOI: 10.1016/j.foodres.2024.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
This study includes a bibliometric analysis and literature review on Conilon coffee and its relevant aspects for the food industry, focusing on its chemical constituents, the application of fermentation as a processing method, and the reuse of waste generated during processing. Relevant articles were selected through a bibliometric analysis of titles indexed in the Web of Science (WoS) and Google Scholar databases. Conilon coffee cultivation, especially in the Brazilian states of Espírito Santo, Rondônia and Bahia, has played a growing role in the global economy, with research focused on strategies to increase productivity, reduce costs and improve nutritional and bioactive quality. The use of agricultural waste as substrates for seedlings and genetic manipulation to develop clonal cultivars are showing promise, although some options may increase the heavy metal content in plants. This review enabled the identification of the main chemical constituents of Conilon coffee and an assessment of their contributions to the product's sensory attributes and bioactive properties. It was clear that the choice of fermentation conditions changes the sensory characterization of coffee, potentially benefiting the overall rating of the beverage. This review also suggests that Conilon coffee residues contain volatile compounds of considerable commercial value, so they should be subjected to extraction methods and subsequently preserved. Acid hydrolysis and microencapsulation can be alternatives for extracting and preserving compounds of interest from Conilon coffee. This work contributes to deepening knowledge about the challenges faced by Conilon coffee and the search for alternatives to increase its market value.
Collapse
Affiliation(s)
- Rafael Fernandes
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Fernando Oliveira Souza
- Departamento de Engenharia de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia da Bahia, 47808-006 Barreiras, BA, Brazil
| | - Dhayna Oliveira Sobral
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Taís Letícia Oliveira Dos Santos
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Maria Angela A Meireles
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Eduardo Augusto Caldas Batista
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| | | |
Collapse
|
4
|
Liu Y, Ma L, Zhang Q, Liu Y, Li D. Construction of fatty acid-ovalbumin binary complexes to improve the water dispersibility, thermal/digestive stability and bioaccessibility of lutein: A comparative study of different fatty acids. Int J Biol Macromol 2024; 273:133010. [PMID: 38852735 DOI: 10.1016/j.ijbiomac.2024.133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Lipids are increasingly being incorporated into delivery systems due to their ability to facilitate intestinal absorption of lipid-soluble nutrients through molecular solubilization and micellization. In this work, self-assembled complexes of ovalbumin (OVA) and nine dietary fatty acids (FAs) were constructed to improve the processability and absorbability of lutein (LUT). Results showed that all FAs could form stable hydrophilic particles with OVA under the optimized ultrasound-coupled pH conditions. Fourier infrared spectroscopy and transmission electron microscopy analysis showed that these binary complexes effectively encapsulated LUT with an encapsulation rate > 90.0 %. Stability experiments showed that these complexes protected LUT well, which could improve thermal stability and in vitro digestive stability by 1.66-3.58-fold and 1.27-2.74-fold, respectively. Besides, the bioaccessibility of LUT was also enhanced by 7.16-24.99-fold. The chain length and saturation of FAs affected the stability and absorption of LUT. Therefore, these results provided some reference for the selection of FAs for efficient delivery of lipid-soluble nutrients.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Qian Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| | - Dan Li
- Navy Medical Center, Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
5
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
6
|
Fernandes Almeida R, Gouveia Gomes MH, Kurozawa LE. Enzymatic hydrolysis improves the encapsulation properties of rice bran protein by increasing retention of anthocyanins in microparticles of grape juice. Food Res Int 2024; 180:114090. [PMID: 38395563 DOI: 10.1016/j.foodres.2024.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
There is a growing demand for the food industry to find appealing matrices that display a clean and sustainable label capable of replacing animal proteins in the encapsulation market for natural pigments. Therefore, this study evaluated the impact of enzymatic hydrolysis by Flavourzyme protease on the encapsulation properties of rice bran proteins, aiming to protect anthocyanins in grape juice microparticles. To achieve this, rice bran protein hydrolysates (RPH) with low (5%, LRPH), medium (10%, MRPH), and high (15%, HRPH) degrees of hydrolysis (DH) were used combined with maltodextrin as carrier agents for the microencapsulation of grape juice by spray drying. The feed solutions contained 1 g of carrier agents (CA)/g of soluble solids from the juice (SS) and protein: a 15% CA ratio. Non-hydrolyzed rice protein was used as a carrier agent to obtain a control sample to evaluate the effect of enzymatic hydrolysis on the microencapsulation of grape juice. Protein modification increased the surface activity of the protein and its ability to migrate to the surface of the microparticles, forming a protective film, as observed by X-ray photoelectron spectroscopy. Using HRPH as a carrier agent combined with maltodextrin improved the internal and total anthocyanin retention, antioxidant capacity measured by DPPH and ABTS+ assays, and powder recovery compared to the control sample, and increased DH reduced particle size and powder stickiness. These particles were more homogeneous, rough, and without cracks. The microencapsulation efficiency was above 70%. All powders exhibited low values of hygroscopicity and degree of caking. Therefore, enzymatic hydrolysis proves to be a promising alternative for improving rice bran protein's encapsulating properties since using RPH as an encapsulating agent conferred greater protection of anthocyanins in microparticles. Moreover, the HRPH sample exhibited the most favorable outcomes overall, indicating its potential for prospective utilization in the market, supported by its elevated Tg.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Matheus Henrique Gouveia Gomes
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | - Louise Emy Kurozawa
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
7
|
Liu Y, Ma L, Guo Y, Kuang H, Liu Y. Fabricating oleic acid-ovalbumin complexes using an ultrasonic-coupled weakly alkaline pH technique: Improving the dispersibility, stability, and bioaccessibility of lutein in water. Food Chem 2024; 435:137593. [PMID: 37776652 DOI: 10.1016/j.foodchem.2023.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
This study constructed a self-assembly non-covalent oleic acid (OA) and ovalbumin (OVA) complex via an ultrasonic coupled pH-driven approach to simultaneously improve the water dispersibility, stability, and bioaccessibility of lutein (LUT). The results showed that homogeneous, stable hydrophilic OA-OVA particles were obtained in optimized conditions (an OVA concentration of 4.0 mg/mL, pH 9.0, ultrasonic conditions of 200 W for 2 min, and OA-OVA molar ratios of 2:1-20:1), with the LUT encapsulation efficiency (EE) exceeding 88.9%. Furthermore, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) confirmed complete LUT encapsulation in the OA-OVA particles, displaying spherical particle formation with smooth surfaces. The OA-OVA complexes effectively improved the thermal and storage stability of LUT and significantly enhanced its bioaccessibility. These findings suggest that fatty acid-protein complexes may have potential application value as carotenoid delivery vectors.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yuanjie Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Huiying Kuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| |
Collapse
|
8
|
Li G, Zhan J, Huang J, Xu E, Yuan C, Chen J, Yao Q, Hu Y. Enhanced fresh-keeping capacity of printed surimi by Ca 2+-nano starch-lutein and its nondestructive freshness monitoring based on 4D printed anthocyanin. Int J Biol Macromol 2023; 252:126543. [PMID: 37634781 DOI: 10.1016/j.ijbiomac.2023.126543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
To solve undiscernible freshness changes of printed functional surimi while maintaining printed shape, 4D printable color-changing material were prepared. Firstly, based on results of printing properties and fresh-keeping of Ca2+-NS-L-surimi, it showed better printing effects (enhanced mechanical strength) and good preservation (inhibition of amino acids decomposition, bacterial growth). However, freshness changes of printed Ca2+-NS-L-surimi were not distinguished directly. To avoid that, 4D printable color-changing material-anthocyanin-hydroxypropyl methyl cellulose-xanthan gum-carrageenan (AHXK) was prepared for indicating freshness through discoloration. Printing results showed AHX with 5 % K had the most suitable mechanical strength (appropriate gel strength, texture, rheology) for printing. Based on that, AHXK had stable color (ΔE fluctuation <5) and was sensitive to pH and ammonia (obvious discoloration; ΔE > 10). Actual freshness monitoring results (co-printing of AHXK-surimi) exhibited significant discolorations, especially for HXK with 0.75 % A. It became green during refrigeration of 3-5 d (keeping fresh, ΔE < 4), brighter green at 7 d (decreased freshness, ΔE > 6), turned yellow at 9 d (spoilage, ΔE > 16), which were distinguished significantly with naked eyes rather than traditional freshness determining. In conclusion, printed AHXK-functional surimi exhibited good printing, preservation and nondestructive freshness monitoring, facilitating application of 3D printed functional surimi.
Collapse
Affiliation(s)
- Gaoshang Li
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Junqi Zhan
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310000, Zhejiang, China
| | - Jiayin Huang
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Enbo Xu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan
| | - Jianchu Chen
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China.
| |
Collapse
|
9
|
Almeida RF, Gomes MHG, Kurozawa LE. Rice bran protein increases the retention of anthocyanins by acting as an encapsulating agent in the spray drying of grape juice. Food Res Int 2023; 172:113237. [PMID: 37689965 DOI: 10.1016/j.foodres.2023.113237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 09/11/2023]
Abstract
Rice bran protein concentrate (RPC), an industrial by-product, may emerge as a green alternative for substituting animal proteins in microencapsulating compounds of interest. This study applied RPC, combined with maltodextrin (MD) as carrier agents, in the spray drying of grape juice, a product rich in these bioactive compounds, seeking to protect anthocyanins from degradation. The effects of carrier agent concentration [C: 0.75, 1.00, and 1.25 g of carrier agents (CA)/g of soluble solids of the juice (SS)] and RPC:CA ratio (P: 0%, as a control sample, 5%, 10%, 15%, and 20%) on anthocyanin retention and powder properties were evaluated. At 1.00 g CA/g SS, the internal and total retentions of anthocyanins improved by 2.4 and 3.2 times, respectively, when the RPC:CA ratio increased from 0% to 20%. The protein also exhibited excellent surface activity on the grape juice and positively influenced the physicochemical properties of the microparticles. There was a reduction in stickiness, degree of caking, and hygroscopicity, in addition to an increased antioxidant capacity when protein was used in combination with MD, especially at 1.00 and 1.25 g CA/g SS. Therefore, this study demonstrated that RPC could enhance the protection of anthocyanins during the spray drying of grape juice.
Collapse
Affiliation(s)
- Rafael Fernandes Almeida
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Matheus Henrique Gouveia Gomes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
10
|
Wang R, Zeng MQ, Wu YW, Teng YX, Wang LH, Li J, Xu FY, Chen BR, Han Z, Zeng XA. Enhanced encapsulation of lutein using soy protein isolate nanoparticles prepared by pulsed electric field and pH shifting treatment. Food Chem 2023; 424:136386. [PMID: 37236083 DOI: 10.1016/j.foodchem.2023.136386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
In this study, soy protein isolate (SPI) was modified by a pulsed electric field (PEF) combined with pH shifting treatment (10 kV/cm, pH 11) to prepare SPI nanoparticles (PSPI11) for efficient loading of lutein. The results showed that when the mass ratio of SPI to lutein was 25:1, the encapsulation efficiency of lutein in PSPI11 increased from 54% to 77%, and the loading capacity increased by 41% compared to the original SPI. The formed SPI-lutein composite nanoparticles (PSPI11-LUTNPs) had smaller, more homogeneous sizes and larger negative charges than SPI7-LUTNPs. The combined treatment favored the unfolding of the SPI structure and could expose its interior hydrophobic groups to bind with lutein. Nanocomplexation with SPIs significantly improved the solubility and stability of lutein, with PSPI11 showing the greatest improvement. As a result, PEF combined with pH shifting pretreatment is an effective method for developing SPI nanoparticles loaded and protected with lutein.
Collapse
Affiliation(s)
- Rui Wang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Man-Qin Zeng
- Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yu-Wei Wu
- Faculty of Foreign Lauguages, Guangdong Baiyun University, Guangzhou 510641, China
| | - Yong-Xin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Lang-Hong Wang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China
| | - Jian Li
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fei-Yue Xu
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China
| | - Bo-Ru Chen
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China
| | - Xin-An Zeng
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510641, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
11
|
Mo H, Chen X, Cui B, Chen Y, Chen M, Xu Z, Wen L, Cheng Y, Jiao Y. Formation and Characterization of Self-Assembled Rice Protein Hydrolysate Nanoparticles as Soy Isoflavone Delivery Systems. Foods 2023; 12:foods12071523. [PMID: 37048344 PMCID: PMC10094372 DOI: 10.3390/foods12071523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In this study, soy isoflavones-loaded nanoparticles were prepared using rice proteins (RPs) hydrolyzed by four types of enzyme (alcalase, neutrase, trypsin, and flavorzyme). After optimizing the preparation conditions, the encapsulation efficiency (EE) of the nanoparticles ranged from 61.16% ± 0.92% to 90.65% ± 0.19%. The RPs that were hydrolyzed by flavorzyme with a molecular weight of <5 KDa showed better characters on the formation of nanoparticles, and the formed nanoparticles had the highest EE and loading capacity (9.06%), the smallest particle size (64.77 nm), the lowest polymer dispersity index (0.19), and the lowest zeta potential (−25.64 mV).The results of Fourier transform ion cyclotron resonance, X-ray diffraction, and fluorescence spectroscopy showed that the nanoparticles were successfully encapsulated. The study of interaction showed that the formation of nanoparticles may depend mainly on hydrogen bonds, but other interactions, such as hydrophobic interactions and electrostatic interactions, cannot be ignored. After encapsulation, the pH stability, temperature stability, ionic stability, and oxidation resistance of the nanoparticles were enhanced. Moreover, the in vitro release experiment showed that the encapsulated nanoparticles had a certain protective effect on soybean isoflavones. In summary, rice protein hydrolysates are promising carriers for soybean isoflavones.
Collapse
Affiliation(s)
- Haoran Mo
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiuwen Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yangling Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
12
|
Hydrolyzed rice glutelin nanoparticles as particulate emulsifier for Pickering emulsion: Structure, interfacial properties, and application for encapsulating curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Wu R, Qie X, Wang Z, Chen Q, Zeng M, Chen J, Qin F, He Z. Improved Light and In Vitro Digestive Stability of Lutein-Loaded Nanoparticles Based on Soy Protein Hydrolysates via Pepsin. Foods 2022; 11:foods11223635. [PMID: 36429227 PMCID: PMC9689512 DOI: 10.3390/foods11223635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
In order to improve the water solubility and stability of lutein, soy protein isolates (SPI) and their hydrolysates via pepsin (PSPI) and alcalase (ASPI) were used as nanocarriers for lutein to fabricate the lutein-loaded nanoparticles (LNPS) of SPI, PSPI, and ASPI. The encapsulation properties, light, and in vitro digestive stability of lutein in nanoparticles, and protein-lutein interactions were investigated. Compared with SPI-LNPS and ASPI-LNPS, PSPI-LNPS was characterized by uniform morphology (approximately 115 nm) with a lower polydispersity index (approximately 0.11) and higher lutein loading capacity (17.96 μg/mg protein). In addition, PSPI-LNPS presented the higher lutein retention rate after light exposure (85.05%) and simulated digestion (77.73%) than the unencapsulated lutein and SPI-LNPS. Fluorescence spectroscopy revealed that PSPI had stronger hydrophobic interaction with lutein than SPI, which positively correlated with their beneficial effects on the light and digestive stability of lutein. This study demonstrated that PSPI possessed significant potential for lutein delivery.
Collapse
Affiliation(s)
- Renyi Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-(51)-085919065
| |
Collapse
|
14
|
Guan T, Zhang Z, Li X, Cui S, McClements DJ, Wu X, Chen L, Long J, Jiao A, Qiu C, Jin Z. Preparation, Characteristics, and Advantages of Plant Protein-Based Bioactive Molecule Delivery Systems. Foods 2022; 11:foods11111562. [PMID: 35681312 PMCID: PMC9180007 DOI: 10.3390/foods11111562] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
As a renewable resource, the market trend of plant protein has increased significantly in recent years. Compared with animal protein, plant protein production has strong sustainability factors and a lower environmental impact. Many bioactive substances have poor stability, and poor absorption effects limit their application in food. Plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems. In this review, we present a detailed and concise summary of the effects and advantages of various plant protein-based carriers in the encapsulation, protection, and delivery of bioactive substances. Furthermore, the research progress of food-grade bioactive ingredient delivery systems based on plant protein preparation in recent years is summarized, and some current challenges and future research priorities are highlighted. There are some key findings and conclusions: (i) plant proteins have numerous functions: as carriers for transportation systems, a shell or core of a system, or food ingredients; (ii) plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems; and (iii) plant protein-based carriers stabilize bioactive substances with potential applications in the food and nutrition fields.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Shaoning Cui
- Department of Food, Yantai Nanshan University, Yantai 264005, China;
| | | | - Xiaotian Wu
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
- Correspondence: ; Tel.: +86-5108-5327-006
| |
Collapse
|
15
|
Han H, Jiao Y, Chang Y, Cheng Y, Shi L. Glycosylation of Zein Hydrolysate as a Nanocarrier for Lutein Delivery: Preparation and Stability. Front Pharmacol 2022; 13:905059. [PMID: 35586048 PMCID: PMC9108384 DOI: 10.3389/fphar.2022.905059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lutein is a functional carotenoid that has a wide range of physiological benefits in humans. However, it easily degrades and becomes inactivated during storage and processing, resulting in low bioavailability. The development of new nanocarriers can effectively improve the stability and biological activity of lutein. In this study, zein hydrolysate (ZH) carriers were glycosylated with glucosamine (GLU) under the action of transglutaminase, and lutein-loaded glycosylated ZH nanoparticles (GZH-LUT) were constructed by liquid–liquid dispersion. The results showed that the GZH-LUT particles had a narrow size distribution in the range of 200–300 nm and a decreased zeta potential and polydispersity index. In particular, GZH trapped lutein more efficiently than ZH. In addition, GZH-LUT had better physical and chemical properties, including better water solubility, oxidative stability, and environmental stability than free lutein and ZH-LUT. These results indicate that glycosylated zein hydrolysate has the potential to be used as a novel protein-based nanocarrier to enhance the solubility and stability of lutein, which can further improve its bioavailability.
Collapse
|
16
|
Yu N, Shao S, Huan W, Ye Q, Nie X, Lu Y, Meng X. Preparation of novel self-assembled albumin nanoparticles from Camellia seed cake waste for lutein delivery. Food Chem 2022; 389:133032. [PMID: 35490515 DOI: 10.1016/j.foodchem.2022.133032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/19/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023]
Abstract
The potential utilization value of Camellia seed cake was explored by extracting albumin (CSCA) to develop nanoparticles for lutein delivery. First, thermal property and amphiphilicity of CSCA were evaluated to guide nanoparticle preparation. Next, CSCA nanoparticles modified with chitosan (CS) were prepared through a thermally induced self-assembly method derived by electrostatic attraction and hydrophobic interaction. The optimized nanoparticles were prepared from CSCA:CS at a mass ratio of 2:1 with pH of 4.5, and an incubation temperature and time of 80 ℃ and 10 min, respectively. The nanoparticles had the highest effective loading capacity for lutein at 5.89 ± 0.78%, and the corresponding encapsulation efficiency was 43.82 ± 5.69%. The storage stability of lutein was improved by nanoparticle loading, and the bioaccessibility of lutein in simulated intestinal digestion increased from 26.8 ± 4.4% to 57.3 ± 9.6% after encapsulation into nanoparticles. These findings may facilitate the development of new and sustainable proteins from plant waste for delivery system applications.
Collapse
Affiliation(s)
- Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Shengxin Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Weiwei Huan
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Qin Ye
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310014, Zhejiang, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
17
|
Development of composite nanoparticles from gum Arabic and carboxymethylcellulose-modified Stauntonia brachyanthera seed albumin for lutein delivery. Food Chem 2022; 372:131269. [PMID: 34655829 DOI: 10.1016/j.foodchem.2021.131269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/16/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022]
Abstract
Lutein is a carotenoid with several beneficial functions, but its poor water solubility, chemical instability, and low bioavailability limits its application. To overcome these shortcomings, self-assembly composite nanoparticles from Stauntonia brachyanthera seed albumin (SBSA), gum Arabic (GA), and carboxymethylcellulose (CMC) were developed for lutein encapsulation. Firstly, SBSA was extracted from seeds and its physicochemical properties were evaluated. Followingly, the nanoparticles were prepared with SBSA through a heat induced self-assembly method which were modified by GA and CMC. The nanoparticles exhibited good storage, pH, and salt stability. Hydrogen bonds, hydrophobic interactions, and electrostatic interactions were proved to derive the formation of nanoparticles. The maximum effective loading capacity (LC) of the lutein in nanoparticles was 0.92 ± 0.01% with an encapsulation efficiency (EE) at 83.95 ± 0.98%. Heat stability and storage stability of lutein were significantly enhanced after encapsulation into nanoparticles. In addition, the bioaccessibility of lutein increased from 17.50 ± 2.60% to 46.80 ± 4.70% after encapsulation into nanoparticles.
Collapse
|
18
|
Curcumin: A multifunctional molecule for the development of smart and active biodegradable polymer-based films. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|