Effect of Lactobacillus fermentum HFY06 Combined with Arabinoxylan on Reducing Lipid Accumulation in Mice Fed with High-Fat Diet.
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022;
2022:1068845. [PMID:
35432720 PMCID:
PMC9007687 DOI:
10.1155/2022/1068845]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
In this experiment, a high-fat diet was used to induce hyperlipidemia in mice to determine the synergistic effect of AX and L. fermentum HFY06 on the prevention of hyperlipidemia and its potential regulatory mechanism. The results of this study showed that after the AX and L. fermentum HFY06 synergistic intervention, the body weight, epididymal fat index, blood lipid level, and liver function indexes of mice were improved. In addition, the synbiotics comprising AX and L. fermentum HFY06 increased the CAT activity in the serum of mice on a high-fat diet, reduced NO and MDA levels, and improved the body's oxidative stress. From the perspective of molecular biology, on the one hand, AX and L. fermentum HFY06 synergistic intervention activated the AMPK pathway to regulate body lipid metabolism; up-regulated the mRNA expressions of CPT-1, PPAR-α, CYP7A1, and HSL; and down-regulated the mRNA expressions of ACC, C/EBPα, and LPL. On the other hand, the synergistic effect of AX and HFY06 enhanced the mRNA expressions of ZO-1, occludin, and claudin-1 in the small intestine of mice, increased the strength of the intestinal barrier, and optimized the composition of the intestinal microbiota. From the above results, it can be concluded that AX and L. fermentum HFY06 have a synergistic effect in improving hyperlipidemia. However, this study was only performed using animal models, and the lipid synthesis and metabolism mechanism are complicated; hence, further clinical studies are needed.
Collapse