1
|
Queiroz de Oliveira W, Angélica Neri Numa I, Alvim ID, Azeredo HMC, Santos LB, Borsoi FT, de Araújo FF, Sawaya ACHF, do Nascimento GC, Clerici MTPS, do Sacramento CK, Maria Pastore G. Multilayer microparticles for programmed sequential release of phenolic compounds from Eugenia stipitata: Stability and bioavailability. Food Chem 2024; 443:138579. [PMID: 38301560 DOI: 10.1016/j.foodchem.2024.138579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
A co-delivery system based on multilayer microparticles was developed and characterized for the sequential release of phenolic compounds (PCs) using different encapsulation processes (spray drying: SD and drying-chilling spray: SDC) and wall materials to improve the stability and bioavailability of PCs. Samples were characterized in terms of process yield (PY%), phenolic retention efficiency (PRE%), chemical structure and crystallinity (NMR, FTIR, DXR), thermal stability (DSC and FT-IR), anti-radical capacity (ORAC and ABTS) and in vitro digestion. PRE% of samples by SD were higher (p < 0.05) than SDC due to the formation of PCs from CRF (cará-roxo flour). NMR, FTIR, DXR confirmed the presence of key components and interactions for the formation of the advanced co-delivery system. The SDC particles showed crystalline regions by XRD and were stable at ∼47 °C. All samples showed good release of PC in the intestinal phase, and antiradical capacity that reached 23.66 µmol TE g-1.
Collapse
Affiliation(s)
- Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil.
| | - Iramaia Angélica Neri Numa
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Izabela D Alvim
- Technology Center of Cereal and Chocolate, Food Technology Institute (ITAL), 13070-178 Campinas, SP, Brazil
| | | | - Leticia B Santos
- Embrapa Instrumentation, R. 15 de Novembro, 1452, 13560-970 São Carlos, SP, Brazil; Graduate Program in Food, Nutrition and Food Engineering, UNESP - São Paulo State University, Rodovia Araraquara-Jaú, km 01, 14800-903 Araraquara, SP, Brazil
| | - Felipe T Borsoi
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Fábio F de Araújo
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil; Faculty of Pharmaceutical Science, University of Campinas, 13083-871 Campinas, SP, Brazil
| | - Alexandra C H F Sawaya
- Faculty of Pharmaceutical Science, University of Campinas, 13083-871 Campinas, SP, Brazil
| | - Gustavo C do Nascimento
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Maria Teresa P S Clerici
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| | - Célio K do Sacramento
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz, 45662-900 BA, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
2
|
Sánchez-Osorno DM, López-Jaramillo MC, Caicedo Paz AV, Villa AL, Peresin MS, Martínez-Galán JP. Recent Advances in the Microencapsulation of Essential Oils, Lipids, and Compound Lipids through Spray Drying: A Review. Pharmaceutics 2023; 15:pharmaceutics15051490. [PMID: 37242731 DOI: 10.3390/pharmaceutics15051490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 05/28/2023] Open
Abstract
In recent decades, the microcapsules of lipids, compound lipids, and essential oils, have found numerous potential practical applications in food, textiles, agricultural products, as well as pharmaceuticals. This article discusses the encapsulation of fat-soluble vitamins, essential oils, polyunsaturated fatty acids, and structured lipids. Consequently, the compiled information establishes the criteria to better select encapsulating agents as well as combinations of encapsulating agents best suited to the types of active ingredient to be encapsulated. This review shows a trend towards applications in food and pharmacology as well as the increase in research related to microencapsulation by the spray drying of vitamins A and E, as well as fish oil, thanks to its contribution of omega 3 and omega 6. There is also an increase in articles in which spray drying is combined with other encapsulation techniques, or modifications to the conventional spray drying system.
Collapse
Affiliation(s)
- Diego Mauricio Sánchez-Osorno
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - María Camila López-Jaramillo
- Grupo de Investigación e Innovación Ambiental (GIIAM), Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - Angie Vanesa Caicedo Paz
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - Aída Luz Villa
- Grupo Catálisis Ambiental, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - María S Peresin
- Sustainable Bio-Based Materials Lab, Forest Products Development Center, College of Forestry, Wildlife, Auburn University, Auburn, AL 36849, USA
| | - Julián Paul Martínez-Galán
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| |
Collapse
|
3
|
Tian S, Xue X, Wang X, Chen Z. Preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics. Front Nutr 2022; 9:982370. [PMID: 36046140 PMCID: PMC9421261 DOI: 10.3389/fnut.2022.982370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Most of the functional substances in food are absorbed in the small intestine, but before entering the small intestine, the strong acid and enzymes in the stomach limit the amount that can reach the small intestine. Therefore, in this paper, to develop a delivery system for functional food ingredients, maintain the biological activity of the ingredients, and deliver them to the target digestive organs, preparation of starch-based functional food nano-microcapsule delivery system and its controlled release characteristics were reviewed. Embedding unstable food active ingredients in starch-based nano-microcapsules can give the core material excellent stability and certain functional effects. Starch-based wall materials refer to a type of natural polymer material that uses starch or its derivatives to coat fat-soluble components with its hydrophobic cavities. The preparation methods of starch-based wall materials mainly include spray drying, extrusion, freeze drying, ultra-high pressure, coagulation, fluidized bed coating, molecular inclusion, chemical, and enzymic methods. The controlled release of functional food can be achieved by preparing starch-based nano-microcapsules to encapsulate the active agents. It has been reported that that compared with traditional embedding agents such as gelatin, acacia gum, and xanthan gum, starch-based functional food nano-microcapsule delivery system had many good properties, including improving antioxidant capacity, bioavailability, probiotics, and concealing bad flavors. From this review, we can learn which method should be chosen to prepare starch-based functional food nano-microcapsule delivery system and understand the mechanism of controlled release.
Collapse
Affiliation(s)
- Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xing'ao Xue
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Xinwei Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Development and characterization of Sechium edule starch and polyvinyl alcohol nanofibers obtained by electrospinning. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zhao W, Zhang B, Liang W, Liu X, Zheng J, Ge X, Shen H, Lu Y, Zhang X, Sun Z, Ospankulova G, Li W. Lutein encapsulated in whey protein and citric acid potato starch ester: Construction and characterization of microcapsules. Int J Biol Macromol 2022; 220:1-12. [PMID: 35970362 DOI: 10.1016/j.ijbiomac.2022.08.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
The poor water solubility and stability of lutein limit its application in industry. Microencapsulation technology is an excellent strategy to solve these problems. This study used citric acid esterified potato starch and whey protein as an emulsifier to prepare oil-in-water lutein emulsion, and microcapsules were constructed by spray drying technology. The effects of different component proportions on microcapsules' microstructure, physical and chemical properties, and storage stability were analyzed. Citrate esterified potato starch had good emulsifying properties, and when compounded with whey protein, the encapsulation efficiency (EE) of microcapsules increased, and the embedding effect of lutein improved. After microencapsulation, the solubility of lutein increased significantly, reaching over 49.71 %, and gradually raised with more whey protein content. Furthermore, the high proportion of whey protein helped improve microcapsules' EE and thermal properties, with the maximum EE reaching 89.36 %. The glass transition temperatures of microcapsules were all higher than room temperature, which indicated that they keep a stable state under general storage conditions. The experimental results of this study may provide a reference for applying lutein in food and other fields.
Collapse
Affiliation(s)
- Wenqing Zhao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Bo Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jiayu Zheng
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yifan Lu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuyun Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Zhuangzhuang Sun
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Gulnazym Ospankulova
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Kazakhstan
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|