1
|
Wang L, Huang J, Hu S, Li X, Zhang Y, Cheng W, Yuan L, Liu G. The dynamic changes and correlations between biochemical properties, flavor and microbial community during fermentation of asparagus by-products. Food Chem 2024; 463:141173. [PMID: 39276550 DOI: 10.1016/j.foodchem.2024.141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Asparagus by-products are the promising resource that urgently need to be re-valorized. This study investigated the dynamic changes in physicochemical properties, organic acids, free amino acids, volatile flavor compounds, microbial succession, and their correlations during 7-day spontaneous fermentation of asparagus by-products. Dominant organic acids (lactic acid and acetic acid) and free amino acids (Ser, Glu, and Ala) increased with fermentation time, with lactic acid reaching 7.73 ± 0.05 mg/mL and Ser increasing 56-fold after 7 days. A total of 58 volatile flavor compounds were identified using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPEM/GC-MS), with esters, alcohols and acids as the main volatile flavor compounds. Fourteen volatile flavor compounds had odor activity value >1. High-throughput sequencing showed Firmicutes and Proteobacteria as the main bacterial phyla, dominated by lactic acid bacteria (Levilactobacillus, Lactiplantibacillus, Weissella). Correlation analysis revealed that five bacterial genera (Levilactobacillus, Lactiplantibacillus, Enterobacter, Pediococcus and Acetobacter) were highly correlated with organic acids, free amino acids, and volatile flavor compounds, indicating their pivotal role in forming the characteristic flavor of fermented asparagus by-products (FAPS). This study provides new insights into the flavor and microbial profile of FAPS, offering a strategy for value-added processing and industrial production.
Collapse
Affiliation(s)
- Li Wang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Jinqing Huang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Shuai Hu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xue Li
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yao Zhang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Wenlong Cheng
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Linfeng Yuan
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| | - Guangxian Liu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
2
|
Chitrakar B, Hou Y, Devahastin S, Zhang M, Sang Y. Protocols for extraction and purification of rutin from leafy by-products of asparagus (Asparagus officinalis) and characterization of the purified product. Food Chem 2023; 418:136014. [PMID: 37001361 DOI: 10.1016/j.foodchem.2023.136014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Valorization of asparagus leafy by-products as a potential source of rutin through selected extraction and purification protocols was investigated. Protocol resulting in the highest extraction yield was first selected. Crude extract was subject to purification via multiple liquid-liquid back extraction using ethanol, methanol or water as a solvent; selection of the most appropriate purification solvent was made based on rutin solubility. The proposed purification protocol yielded yellow-color crystals, which were characterized by fluorescence microscopy, Fourier-transform infrared spectroscopy and liquid chromatography-mass spectrometry to confirm them as rutin. Purity of rutin was confirmed by ultra-performance liquid chromatography at 97.6%; yield of the purified rutin was determined to be 78.2%. The remaining rutin (21.8%) was found in the liquids collected at various stages of purification; such liquids could be recycled using the same purification process. The proposed protocols are simple, yet effective for rutin extraction and purification from asparagus leafy by-products.
Collapse
Affiliation(s)
- Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Bangkok 10140, Thailand
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, Hebei, China.
| |
Collapse
|
3
|
Bhagya Raj G, Dash KK. Microencapsulation of betacyanin from dragon fruit peel by complex coacervation: Physicochemical characteristics, thermal stability, and release profile of microcapsules. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|