Impact of Electric Arcs and Pulsed Electric Fields on the Functional Properties of Beta-Lactoglobulin.
Foods 2022;
11:foods11192992. [PMID:
36230068 PMCID:
PMC9562651 DOI:
10.3390/foods11192992]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Beta-lactoglobulin (β-lg) is a major whey protein with various techno-functional properties that can be improved by several treatments. Therefore, the objective of this study was to explore the impact of green high-voltage electrical treatments (HVETs)—namely, pulsed electric fields and electric arcs—on the functional properties of β-lg. Both emulsifying and foaming stability and capacity, as well as the hygroscopicity of non-treated and pretreated β-lg, were explored. The results demonstrated that the emulsifying capacity and stability of pretreated samples increased by 43% and 22% when compared to native β-lg, respectively. Likewise, the pretreated β-lg displayed better foaming stability compared to native β-lg. In addition, the HVETs significantly decreased the hygroscopicity of β-lg (by 48% on average), making it a good ingredient with reduced hygroscopicity for the food industry.
Collapse