1
|
Song Y, Zhang J, Zhu L, Zhang H, Wu G, Liu T. Recent advances in nanodelivery systems of resveratrol and their biomedical and food applications: a review. Food Funct 2024; 15:8629-8643. [PMID: 39140384 DOI: 10.1039/d3fo03892k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Resveratrol is a non-flavonoid polyphenolic compound with numerous functional properties, such as anticancer, anti-inflammation, anti-oxidation, anti-obesity and more. However, resveratrol's poor solubility within aqueous media and low stability usually lead to compromised bioavailability, ultimately limiting its uptake and applications. Nanodelivery technologies have been studied intensively due to their potential in effectively improving resveratrol properties, thereby providing promising solutions for enhancing the bioavailability of resveratrol. Thus, this article aimed to review the recent advances of resveratrol nanodelivery systems, specifically on the types of nanodelivery systems, the corresponding preparation principles, advantages, as well as potential limitations associated. Meanwhile, studies have also found that coupled with nanodelivery systems, the functional properties of resveratrol could trigger apoptosis in cancer cells and inflammatory cells through various signaling pathways. Therefore, this article will also lead into discussions on the application aspects of resveratrol nanodelivery systems, emphasizing toward the fields of biomedical and food sciences. Potential pitfalls of resveratrol nanodelivery systems, such as issues with toxicity and target release, as well as outlooks regarding resveratrol nanodelivery systems are included in the Conclusion section, in the hope to provide insights for relevant future research.
Collapse
Affiliation(s)
- Yanan Song
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou 256600, China
| |
Collapse
|
2
|
Bojňanská T, Kolesárová A, Čech M, Tančinová D, Urminská D. Extracts with Nutritional Potential and Their Influence on the Rheological Properties of Dough and Quality Parameters of Bread. Foods 2024; 13:382. [PMID: 38338518 PMCID: PMC10855696 DOI: 10.3390/foods13030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Formulating basic food to improve its nutritional profile is one potential method for food innovation. One option in formulating basic food such as bread is to supplement flours with specified amounts of non-bakery raw materials with high nutritional benefits. In the research presented here, we studied the influence of the addition of curcumin and quercetin extracts in amounts of 2.5% and 5% to wheat flour (2.5:97.5; 5:95). The analysis of the rheological properties of dough was carried out using a Mixolab 2. A Rheofermentometer F4 was used to assess the dough's fermentation, and a Volscan was used to evaluate the baking trials. The effect of the extracts on the rheological properties of dough was measured and found to be statistically significant, with curcumin shortening both dough development time and dough stability. Doughs made with greater quantities of extract had a greater tendency to early starch retrogradation, which negatively affects the shelf life of the end products. The addition of extracts did not significantly affect either the ability to form gas during fermentation or its retention, which is important because this gas is prerequisite to forming a final product with the required volume and porosity of crumb. Less favourable results were found on sensory evaluation, wherein the trial bread was significantly worse than the control wheat bread. The panel's decision-making might have been influenced by the atypical colour of the bread made with additives, and in case of a trial bread made with quercetin, by a bitter taste. From the technological point of view, the results confirmed that the composite flours prepared with the addition of extracts of curcumin and quercetin in amounts of 2.5% and 5% can be processed according to standard procedures. The final product will be bread with improved nutritional profile and specific sensory properties, specifically an unconventional and attractive colour.
Collapse
Affiliation(s)
- Tatiana Bojňanská
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Anna Kolesárová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Matej Čech
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| |
Collapse
|
3
|
Xu W, McClements DJ, Peng X, Xu Z, Meng M, Zou Y, Chen G, Jin Z, Chen L. Optimization of food-grade colloidal delivery systems for thermal processing applications: a review. Crit Rev Food Sci Nutr 2023; 64:12907-12921. [PMID: 37724782 DOI: 10.1080/10408398.2023.2258215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Colloidal delivery systems are widely used in the food industry to enhance the dispersibility, stability, efficacy, or bioavailability. However, when exposed to the high temperature, delivery systems are often prone to degradation, which limits its application in thermal processing. In this paper, the effects of thermal processing on the performance of traditional protein-based or starch-based delivery systems are firstly described, including the molecular structure changes of proteins, starches or lipids, and the degradation of embedded substances. These effects are unfavorable to the application of the delivery system in thermal processing. Then, strategies of improving the heat resistance of food grade colloid delivery system and their use in frying, baking and cooking food are mainly introduced. The heat resistance of the delivery system can be improved by a variety of strategies, including the development of new heat-resistant materials, the addition of heat-resistant coatings to the surface of delivery systems, the cross-linking of proteins or starches using cross-linking agents, the design of particle structures, the use of physical means such as ultrasound, or the optimization of the ingredient formula. These strategies will help to expand the application of heat-resistant delivery systems so that they can be used in real thermal processing.
Collapse
Affiliation(s)
- Wen Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd, Zhongshan, China
| | - Yidong Zou
- Yixing Skystone Feed Co., Ltd, Wuxi, China
| | | | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Licheng Detection & Certification Group Co., Ltd, Zhongshan, China
| |
Collapse
|
4
|
Feng Y, Jin C, Lv S, Zhang H, Ren F, Wang J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants (Basel) 2023; 12:1577. [PMID: 37627572 PMCID: PMC10451665 DOI: 10.3390/antiox12081577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins have been extensively studied for their outstanding functional properties, while polyphenols have been shown to possess biological activities such as antioxidant properties. There is increasing clarity about the enhanced functional properties as well as the potential application prospects for the polyphenol-protein complexes with antioxidant properties. It is both a means of protein modification to provide enhanced antioxidant capacity and a way to deliver or protect polyphenols from degradation. This review shows that polyphenol-protein complexes could be formed via non-covalent or covalent interactions. The methods to assess the complex's antioxidant capacity, including scavenging free radicals and preventing lipid peroxidation, are summarized. The combination mode, the type of protein or polyphenol, and the external conditions will be the factors affecting the antioxidant properties of the complexes. There are several food systems that can benefit from the enhanced antioxidant properties of polyphenol-protein complexes, including emulsions, gels, packaging films, and bioactive substance delivery systems. Further validation of the cellular and in vivo safety of the complexes and further expansion of the types and sources of proteins and polyphenols for forming complexes are urgently needed to be addressed. The review will provide effective information for expanding applications of proteins and polyphenols in the food industry.
Collapse
Affiliation(s)
| | | | | | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| | | | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.F.); (C.J.); (S.L.); (F.R.)
| |
Collapse
|
5
|
Silva AFR, Silva-Reis R, Ferreira R, Oliveira PA, Faustino-Rocha AI, Pinto MDL, Coimbra MA, Silva AMS, Cardoso SM. The Impact of Resveratrol-Enriched Bread on Cardiac Remodeling in a Preclinical Model of Diabetes. Antioxidants (Basel) 2023; 12:antiox12051066. [PMID: 37237932 DOI: 10.3390/antiox12051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The World Health Organization aims to stop the rise of diabetes by 2025, and diet is one of the most efficient non-pharmacological strategies used to prevent it. Resveratrol (RSV) is a natural compound with anti-diabetic properties, and incorporating it into bread is a suitable way to make it more accessible to consumers as it can be included as part of their daily diet. This study aimed to evaluate the effect of RSV-enriched bread in preventing early type 2 diabetes cardiomyopathy in vivo. Male Sprague Dawley rats (3 weeks old) were divided into four groups: controls with plain bread (CB) and RSV bread (CBR), and diabetics with plain bread (DB) and RSV bread (DBR). Type 2 diabetes was induced by adding fructose to the drinking water for two weeks followed by an injection of streptozotocin (STZ) (40 mg/kg). Then, plain bread and RSV bread (10 mg RSV/kg body weight) were included in the rats' diet for four weeks. Cardiac function, anthropometric, and systemic biochemical parameters were monitored, as well as the histology of the heart and molecular markers of regeneration, metabolism, and oxidative stress. Data showed that an RSV bread diet decreased the polydipsia and body weight loss observed in the early stages of the disease. At the cardiac level, an RSV bread diet diminished fibrosis but did not counteract the dysfunction and metabolic changes seen in fructose-fed STZ-injected rats.
Collapse
Affiliation(s)
- Andreia F R Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro UTAD, 5000-801 Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Zootechnics, Comprehensive Health Research Center, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
| | - Maria de Lurdes Pinto
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro UTAD, 5000-801 Vila Real, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
The Influence of Flavonoid Dihydroquercetin on the Enzymatic Processes of Dough Ripening and the Antioxidant Properties of Bread. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Bread is an integral part of the diet of the world population. Development of bread enriched with biologically active substances, including antioxidants, could be good nutritional support for human health. Among well-studied antioxidants, we can highlight dihydroquercetin, a flavonoid with outstanding antioxidant properties, such as anti-inflammatory activity, immunostimulatory properties, anti-cancer properties, and others. At the same time, the technology of bread enrichment must consider the possible negative effects of the additive on the technological processes and properties of the final product. The present work was carried out to evaluate the effect of dihydroquercetin on the enzymatic processes occurring during dough maturation and the antioxidant properties of the finished bread. Dihydroquercetin was added in amounts of 0.05 g, 0.07 g, and 0.1 g per 100 g of wheat flour and fermented with commercial baker’s yeast (Saccharomyces cerevisiae). The kinetics of pH and total titratable acidity (TTA) during dough fermentation showed that dihydroquercetin caused slight slowing of enzymatic processes. However, the dosage of dihydroquercetin did not cause statistically significant changes in the yeast concentration, which reached a level of 108 KOU/g after 2 h in all dough samples. Loss of dihydroquercetin during fermentation was established at a level of 20–25%. At the same time, an increase in the total amount of flavonoids in the dough after 2 h of fermentation and an increase in values of antioxidant activity were noted. The antioxidant properties of the bread also increased when it was enriched with dihydroquercetin (about 3.5–4 times) despite the fact that the total quantitative loss of antioxidant in the technological process was considerable (about 40%). A protective effect of the bread matrix on flavonoids during digestion was shown. Dihydroquercetin loss was about 25% regardless of the amount applied. This work clearly showed that addition of dihydroquercetin to a bread formulation represents a promising strategy for increasing the antioxidant properties of bread.
Collapse
|
7
|
Prabhahar M, K G, S P, S S, M SK, GO J, Varuvel EG, Lenin A H. A Study on Glycyrrhiza glabra-Fortified Bread: Predicted Glycemic Index and Bioactive Component. Bioinorg Chem Appl 2022; 2022:4669723. [PMID: 36082190 PMCID: PMC9448619 DOI: 10.1155/2022/4669723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Bread is one of the highest-selling food products throughout the world. Lots of demand arose from the bread producers by the consumers to convert the traditional bread into functional food. In this study, normal bread was converted to functional herbal bread by infusing it with extracts of Glycyrrhiza glabra. The functional components of the Glycyrrhiza glabra were analyzed by liquid chromatography-mass spectroscopy (LCMS). The antioxidant study revealed that the extract has high antioxidant potency. The present study also investigated the antidiabetic potency of the extract. Bread is fortified with various percentages of Glycyrrhiza glabra, such as 2, 4, and 6. The fortified bread was analyzed for various sensory and taste parameters. Biochemical assays such as the in vitro digestibility test and glycaemic index suggest that fortified bread reduces the glycaemic index. From the study, it was inferred that 6% of infused bread was found to have high potency as a functional food when compared to 2 and 4%. From the above study, it was suggested that fortified bread reduces the glycaemic index and is best suited for diabetic people and diet watchers.
Collapse
Affiliation(s)
- M. Prabhahar
- Department of Mechanical Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation, Deemed to be University, Chennai, Tamilnadu, India
| | - Gomathi K
- Department of Biotechnology, Dr.M.G.R. Educational and Research Institute, Chennai, India
| | - Prakash S
- Department of Mechanical Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation, Deemed to be University, Chennai, Tamilnadu, India
| | - Sendilvelan S
- Department of Mechanical Engineering, Dr.M.G.R. Educational and Research Institute, Chennai, India
| | - Saravana Kumar M
- Department of Mechanical Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation, Deemed to be University, Chennai, Tamilnadu, India
| | - Jijina GO
- Department of Biomedical Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission's Research Foundation, Deemed to be University, Chennai, Tamilnadu, India
| | - Edwin Geo Varuvel
- Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Haiter Lenin A
- Department of Mechanical Engineering, Wollo University, Kombolcha Institute of Technology, Kombolcha Post Box no. 208, Ethiopia
| |
Collapse
|