1
|
Rayabharam A, Qu H, Wang Y, Aluru NR. Spontaneous sieving of water from ethanol using angstrom-sized nanopores. NANOSCALE 2023; 15:12626-12633. [PMID: 37462526 DOI: 10.1039/d3nr02768f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Ethanol is widely used as a precursor in products ranging from drugs to cosmetics. However, distillation of ethanol from aqueous solution is energy intensive and expensive. Here, we show that angstrom-sized nanopores with precisely controlled pore sizes can spontaneously remove water from ethanol-water mixtures through molecular sieving at room temperature and pressure. For small-diameter nanotubes, water-filling is observed, but ethanol is completely excluded, as evidenced by time-dependent density functional theory (TD-DFT) calculations and spectroscopy measurements. Potential of mean force calculations were performed to determine how the free energy barriers for water and ethanol-filling of the nanotubes change with increasing pore size. Water/ethanol selectivity ratio reaching as high as 6700 is observed with a (6,4) nanotube, which has a pore size of 0.204 nm. This selectivity vanishes as the pore size increases beyond 0.306 nm. These findings provide insights that may help realize energy efficient molecular sieving of ethanol and water.
Collapse
Affiliation(s)
- Archith Rayabharam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - N R Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
2
|
Moderate electric field-assisted hydro-distillation of thyme essential oil: Characterization of microstructural changes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Hu L, Qiu W, Feng Y, Jin Y, Deng S, Tao N, Jin Y. Effect of Recycling Ohmic Heating on the Preparation of Chitosan from the Portunus trituberculatus Crab Shells. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Goksu A, OMAC B, Sabancı S. Ohmic Heating: A Futuristic Method for Cooking Bulgur. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ali Goksu
- Faculty of Fine Arts, Department of Gastronomy and Culinary Arts Munzur University Tunceli Turkey
| | - Basri OMAC
- Tunceli Vocational School, Department of Food Processing Munzur University Tunceli Turkey
| | - Serdal Sabancı
- Faculty of Health Sciences, Department of Nutrition and Dietetics Munzur University Tunceli Turkey
| |
Collapse
|
5
|
Cokgezme OF, Icier F. Frequency and wave type effects on extractability of oleuropein from olive leaves by moderate electric field assisted extraction. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Parascanu MM, Sanchez N, Sandoval-Salas F, Carreto CM, Soreanu G, Sanchez-Silva L. Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64374-64393. [PMID: 34304359 PMCID: PMC8610961 DOI: 10.1007/s11356-021-15471-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
In this article, sugarcane molasses and agave juice were compared as potential feedstocks for producing bioethanol in Mexico in terms of their environmental impact and economic factors. Life cycle assessment (LCA) using SimaPro was carried out to calculate environmental impacts by using a cradle-to-gate approach. A preliminary economic analysis was performed to determine the economic feasibility of the studied options. Also, capital goods costs were obtained using the Aspen Plus economy package. Moreover, a sensitivity analysis was involved to compare the environmental and economic viability of producing bioethanol from sugarcane molasses and agave juice. LCA results revealed that cultivation and fermentation were the most harmful stages when producing bioethanol from sugarcane molasses and agave juice, respectively. Furthermore, when it was derived from agave juice rather than sugarcane molasses, it had more environmental benefits. This was ascribed to the lower consumption rate of fertilizers, pesticides, and emissions given off from the former. Regarding financial aspects, the preliminary analysis showed that producing bioethanol was not economically viable when grid energy alone was used. However, if power from the grid is partially replaced with renewable energy, producing bioethanol becomes economically feasible, and sugarcane molasses is the most suitable feedstock.
Collapse
Affiliation(s)
| | - Nestor Sanchez
- Energy, Materials and Environmental Laboratory, Department of Chemical and Biochemical Processes, Universidad de La Sabana, Campus Universitario Puente del Común, km. 7 Autopista Norte, Bogotá, Colombia
| | | | | | - Gabriela Soreanu
- Department of Environmental Engineering and Management, Technical University "Gheorghe Asachi" of Iasi, Iasi, Romania
| | - Luz Sanchez-Silva
- Department of Chemical Engineering, University of Castilla-La Mancha, Ciudad Real, Spain.
| |
Collapse
|
7
|
Gavahian M, Chu R, Ratchaneesiripap P. An ultrasound‐assisted extraction system to accelerate production of Mhiskey, a rice spirit‐based product, inside oak barrel: Total phenolics, color, and energy consumption. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan
| | - Rachael Chu
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan
| | - Paphawarin Ratchaneesiripap
- International Master's Degree Program in Food Science, International College National Pingtung University of Science and Technology Pingtung Taiwan
| |
Collapse
|
8
|
Gavahian M, Mathad GN, Oliveira CAF, Mousavi Khaneghah A. Combinations of emerging technologies with fermentation: Interaction effects for detoxification of mycotoxins? Food Res Int 2021; 141:110104. [PMID: 33641971 DOI: 10.1016/j.foodres.2021.110104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Consumption of foods containing mycotoxins, as crucial groups of naturally occurring toxic agents, could pose significant health risks. While the extensive scientific literature indicates that prevention of contamination by toxigenic fungi is one of the best ways to reduce mycotoxins, detoxifying strategies are useful for improving the safety of food products. Nowadays, the food and pharmaceutical industries are using the concept of combined technologies to enhance the product yield by implementing emerging techniques, such as ultrasound, ohmic heating, moderate electric field (MEF), pulsed electric field (PEF) and high-pressure processing, during the fermentation process. While the application of emerging technologies in improving the fermentation process is well explained in this literature, there is a lack of scientific texts discussing the possibility of mycotoxin degradation through the interaction effects of emerging technologies and fermentation. Therefore, this study was undertaken to provide deep insight into applying emerging processing technologies in fermentation, mechanisms and the prospects of innovative combinations of physical and biological techniques for mycotoxins' detoxification. Among various emerging technologies, ultrasound, ohmic heating, MEF, PEF, and cold plasma have shown significant positive effects on fermentation and mycotoxins detoxification, highlighting the possibility of interactions from such combinations to degrade mycotoxins in foods.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Neipu 91201, Pingtung, Taiwan, ROC.
| | - Girish N Mathad
- Department of Tropical Agriculture and International Co-operation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | - Carlos A F Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP 13635-900, Pirassununga, SP, Brazil.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Ohmic-assisted peeling of fruits: Understanding the mechanisms involved, effective parameters, and prospective applications in the food industry. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Sabanci S, Icier F. Rheological behavior of sour cherry juices concentrated by ohmic and conventional evaporation processes under vacuum. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Serdal Sabanci
- Faculty of Health Sciences Department of Nutrition and Dietetics Munzur University Tunceli Turkey
| | - Filiz Icier
- Faculty of Engineering Department of Food Engineering Ege University Izmir Turkey
| |
Collapse
|
11
|
Gavahian M, Tiwari BK. Moderate electric fields and ohmic heating as promising fermentation tools. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Sabanci S, Icier F. ENHANCEMENT OF THE PERFORMANCE OF SOUR CHERRY JUICE CONCENTRATION PROCESS IN VACUUM EVAPORATOR BY ASSISTING OHMIC HEATING SOURCE. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Korkmaz K, Alemrajabi M, Rasmuson ÅC, Forsberg KM. Separation of valuable elements from NiMH battery leach liquor via antisolvent precipitation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Gavahian M, Sastry S, Farhoosh R, Farahnaky A. Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:227-273. [PMID: 32035597 DOI: 10.1016/bs.afnr.2019.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The applicability of ohmic heating, as a volumetric heating technique, has been explored in various sectors of the food industry. The use of ohmic heating for essential oil extraction is among its emerging applications. This chapter overviews the recent progress in this area of research, discusses the mechanisms involved in ohmic-based essential oil extraction processes, explains the effective process parameters, highlights their benefits, and explains the considerations to address the obstacles to industrial implementation. Ohmic-assisted hydrodistillation (OAHD) and ohmic-accelerated steam distillation (OASD) systems were proposed as alternatives to conventional hydrodistillation and steam distillation, respectively. These techniques have successfully extracted essential oils from several aromatic plants (e.g., thyme, peppermint, citronella, and lavender). Both OAHD and OASD possess a number of benefits, such as reducing the extraction time and energy consumption, compared to classical extraction methods. However, these techniques are in their infancy and further economic and upscaling studies are required for their industrial adaptation.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China.
| | - Sudhir Sastry
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, United States
| | - Reza Farhoosh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Coelho M, Pereira R, Rodrigues AS, Teixeira JA, Pintado ME. Extraction of tomato by-products’ bioactive compounds using ohmic technology. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Gavahian M, Khaneghah AM. Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Crit Rev Food Sci Nutr 2019; 60:1581-1592. [DOI: 10.1080/10408398.2019.1584600] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
18
|
Gavahian M, Chu Y, Mousavi Khaneghah A. Recent advances in orange oil extraction: an opportunity for the valorisation of orange peel waste a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13987] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center Food Industry Research and Development Institute No. 331 Shih‐Pin Road Hsinchu 30062 Taiwan
| | - Yan‐Hwa Chu
- Product and Process Research Center Food Industry Research and Development Institute No. 331 Shih‐Pin Road Hsinchu 30062 Taiwan
| | - Amin Mousavi Khaneghah
- Department of Food Science Faculty of Food Engineering University of Campinas (UNICAMP) Rua Monteiro Lobato 80, Campinas 13083‐862 São Paulo Brazil
- Department of Technology of Chemistry Azerbaijan State Oil and Industry University 16/21 Azadliq Ave Baku Azerbaijan
| |
Collapse
|
19
|
Pateiro M, Barba FJ, Domínguez R, Sant'Ana AS, Mousavi Khaneghah A, Gavahian M, Gómez B, Lorenzo JM. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Res Int 2018; 113:156-166. [PMID: 30195508 DOI: 10.1016/j.foodres.2018.07.014] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/11/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Oxidation reactions during manufacturing, distribution, and storage of meat and meat products result in undesirable physicochemical changes and aromas, which leads to detrimental effects on the product quality. This could be translated into the consumer dissatisfaction and economic loss. One of the most common practices to overcome this issue is the incorporation of synthetic antioxidants. However, the increasing health-consciousness of consumers and their preference for natural additives leads to the search of natural alternatives to synthetic antioxidants. A number of essential oils have strong antioxidant properties and are explored as potential alternatives to chemical antioxidants in the meat industry. These compounds are classified as Generally Recognized as Safe (GRAS), and their application single or combined with other essential oils, ingredients or preservation technologies have beneficial effects on meat products. Their activity depends on several parameters including their concentrations, their possible synergistic effects, and the extraction method used to obtain them. Although steam distillation is the most common industrial technique for essential oils extraction, novel technologies have been emerged to address the drawbacks of the traditional extraction method and to obtain high-quality essential oils. This paper provides an overview of the application of essential oils as potential substitutes for synthetic antioxidants in the meat industry, exploring their mechanism of action against oxidation reactions, and the effect of extraction methods on their effectiveness.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80 Monteiro Lobato St., 13083-862 Campinas, São Paulo, Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas, 80 Monteiro Lobato St., 13083-862 Campinas, São Paulo, Brazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, No. 331 Shih-Pin Rd., Hsinchu 30062, Taiwan, ROC
| | - Belén Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain.
| |
Collapse
|
20
|
Gavahian M, Chu YH, Sastry S. Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Compr Rev Food Sci Food Saf 2018; 17:1040-1052. [DOI: 10.1111/1541-4337.12362] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mohsen Gavahian
- Product and Process Research Center; Food Industry Research and Development Inst.; No. 331 Shih-Pin Rd. Hsinchu 30062 Taiwan ROC
| | - Yan-Hwa Chu
- Product and Process Research Center; Food Industry Research and Development Inst.; No. 331 Shih-Pin Rd. Hsinchu 30062 Taiwan ROC
| | - Sudhir Sastry
- Dept. of Food, Agricultural and Biological Engineering; The Ohio State Univ.; 590 Woody Hayes Drive Columbus OH 43210 USA
| |
Collapse
|
21
|
|
22
|
|
23
|
|
24
|
Gavahian M, Farahnaky A, Sastry S. Multiple effect concentration of ethanol by ohmic-assisted hydrodistillation. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
|