1
|
Bai X, Zhang M, Zhang Y, Zhang Y, Huo R, Guo X. In vitro fermentation of pretreated oat bran by human fecal inoculum and impact on microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
2
|
Najari Z, Khodaiyan F, Yarmand MS, Hosseini SS. Almond hulls waste valorization towards sustainable agricultural development: Production of pectin, phenolics, pullulan, and single cell protein. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:208-219. [PMID: 35149477 DOI: 10.1016/j.wasman.2022.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
This research aimed to valorize almond hulls based on a zero-waste strategy towards sustainable agricultural developments for the recovery and production of valuable compounds. For this purpose, the potential to produce four products, including pectin (AHP), phenolic compounds (AHPC), pullulan (PUL), and single-cell protein (SCP), was examined. The acidic extraction factors were optimized using a Box-Behnken design for the simultaneous extraction of AHP and AHPC, and the obtained results showed that the maximum AHP (26.32% w/w) and AHPC (6.97% w/w) yields were achieved at 90 °C, pH of 1.4, 58.65 min, and liquid-solid ratio (LSR) of 20.13 v/w as the optimum point. In the next step, the solid residues that remained from the AHP and AHPC extraction process (PESR) were treated with cellulase enzyme and ultrasound and were used for simultaneous microbial production of PUL (34.29-24.56 g/L) and biomass containing SCP (19.31-13.44% w/w). Furthermore, the obtained results showed that AHP was low methylated (26.40%), rich in galacturonic acid (67.88%), and high in molecular weight (595.299 kDa). Also, the investigations of structural properties of AHP and PUL confirmed the presence of chemical structures of these polysaccharides in the formed supernatants. In addition, the AHPC showed considerable antioxidant activity compared with ascorbic acid (ASC) and BHA.
Collapse
Affiliation(s)
- Zahra Najari
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Mohammad Saeid Yarmand
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
3
|
The effects of chitosan containing nano-capsulated Cuminum cyminum essential oil on the shelf-life of veal in modified atmosphere packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01213-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Kazemi M, Niazi A, Yazdanipour A. Extraction of Satureja Rechingeri volatile components through ultrasound-assisted and microwave-assisted extractions and comparison of the chemical composition with headspace solid-phase microextraction. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1975575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Kazemi
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Ali Niazi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Atisa Yazdanipour
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Dutta S, Kundu A, Dutta A, Saha S, Banerjee K. A comprehensive chemical profiling of phytochemicals from Trachyspermum ammi and encapsulation for sustained release. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Gültekin Subaşı B, Vahapoğlu B, Capanoglu E, Mohammadifar MA. A review on protein extracts from sunflower cake: techno-functional properties and promising modification methods. Crit Rev Food Sci Nutr 2021; 62:6682-6697. [PMID: 33792434 DOI: 10.1080/10408398.2021.1904821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
De-oiled sunflower cake is a sustainable and promising protein source with high phenolic and fiber contents. The cake, which is an industrial by-product has been the subject of many studies investigating various aspects such as protein extraction, functional properties, interaction with other ingredients, and its performance in a wide range of food products. Innovative and conventional techniques of protein extraction from sunflower cake have been investigated to increase extraction yield and improve desired functional characteristics. Modulation of structure of plant-based proteins helps to control their techno-functional properties and widen their applications. Structure modification of proteins by physical methods including ultrasound treatment and gamma irradiation as well as enzymatic and chemical methods has been used to improve the functional properties of sunflower protein. This review collects and critically discusses the available information on techno-functional properties of protein extracts from sunflower cake and how its techno-functional properties can be tailored using various structure modification methods.
Collapse
Affiliation(s)
- Büşra Gültekin Subaşı
- Hafik Kamer Ornek MYO, Cumhuriyet University, Sivas, Turkey.,Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.,Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Beyza Vahapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Cantu-Jungles TM, Zhang X, Kazem AE, Iacomini M, Hamaker BR, Cordeiro LMC. Microwave treatment enhances human gut microbiota fermentability of isolated insoluble dietary fibers. Food Res Int 2021; 143:110293. [PMID: 33992392 DOI: 10.1016/j.foodres.2021.110293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Most insoluble dietary fibers are known to be relatively poorly fermented by the human gut microbiota. Here, the potential of microwave (MW) treatment to enhance the susceptibility of insoluble fruit polysaccharides to fermentation by the human gut microbiota was evaluated. Insoluble fruits dietary fibers before (xylan A, xylan T, and arabinan) and after MW (xylan A-MW, xylan T-MW, and arabinan-MW) treatment were fermented using an in vitro fermentation model. Gas production, shifts in pH, and short chain fatty acids (SCFAs) production showed an increase in fermentability of all tested dietary fibers, with an average 4-fold increase in SCFAs production after microwaving with total SCFAs ranging from 17.1 mM in the arabinan-MW to 40.4 mM in the xylan T-MW. While arabinan-MW and xylan T-MW promoted all three SCFAs proportionally (acetate:propionate:butyrate), xylan A-MW led to a marked and slow increase in butyrate reaching 28.1% of total SCFAs at 24 h. Rearrangements in three-dimensional structure that potentially facilitate bacterial accessibility to the dietary fiber were observed by scanning electron microscopy in xylan A-MW, forming coin-like particles with ~1.1 µm diameter. 16S rRNA gene sequencing indicated that microbiota shifts were related to both treatment (native versus MW) and dietary fiber type with many butyrogenic species being promoted by xylan A-MW. Overall, MW treatment enhanced insoluble dietary fiber fermentability promoting increased SCFAs production and bacterial shifts which are related to health benefits.
Collapse
Affiliation(s)
- Thaisa Moro Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19.046, CEP 81.531-980, Curitiba, PR, Brazil.
| | - Xiaowei Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ahmad E Kazem
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Marcello Iacomini
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19.046, CEP 81.531-980, Curitiba, PR, Brazil.
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Lucimara M C Cordeiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19.046, CEP 81.531-980, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Optimization of Iranian golpar (Heracleum persicum) extract encapsulation using sage (Salvia macrosiphon) seed gum: chitosan as a wall materials and its effect on the shelf life of soybean oil during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00528-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
9
|
Osorio-Tobón JF. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology 2020; 57:4299-4315. [PMID: 33087945 DOI: 10.1007/s13197-020-04433-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Phenolic compounds are a group of secondary metabolites produced by plants under stressful conditions. Phenolic compounds play an important role in the prevention and treatment of certain illnesses and are exploited by the food and pharmaceutical industries. Conventional methods are commonly used as models to compare the efficiencies of alternative extraction methods. Among alternative extraction processes, microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE) and ultrasonic-assisted extraction (UAE) are the most studied. These methods produce extracts rich in phenolic compounds using moderate temperatures, short extraction times, and solvents generally recognized as safe. The combination of extraction time and temperature plays a critical role in the stability of the compounds. Solvents of higher polarity enhance the extraction of phenolic compounds. The use of the ethanol-water mixture for MAE, PLE, and UAE is recommended. MAE and UAE involve shorter extraction times than do PLE and SFE. SFE requires a low average temperature (40 °C). MAE produces the highest total phenolic content [227.63 mg GAE/g dry basis (d.b.)], followed by PLE (173.65 mg GAE/g d.b.), UAE (92.99 mg GAE/g d.b.) and SFE (37 mg GAE/g d.b.). Extraction yields and recovery rates of the phenolic compounds can be enhanced by combining and integrating extraction methods.
Collapse
Affiliation(s)
- J Felipe Osorio-Tobón
- Faculty of Health Sciences, University Institution Colegio Mayor de Antioquia (COLMAYOR), Carrera 78 # 65-46, Medellín, 050036 Antioquia Colombia
| |
Collapse
|
10
|
Hosseini S, Parastouei K, Khodaiyan F. Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. Int J Biol Macromol 2020; 158:911-921. [PMID: 32360971 DOI: 10.1016/j.ijbiomac.2020.04.241] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
In the present study, the effect of microwave-assisted extraction conditions on the simultaneous recovery of pectin and phenolic compounds from sour cherry pomace (SCP) was optimized. The results showed that maximum yield of pectin (14.65 ± 0.39%) and phenolic compounds (14.36 ± 0.29%) was obtained under microwave power of 800 W, irradiation time of 300 s, pH of 1.00 and LSR of 20 v/w. The resulting pectin under the mentioned conditions had the moisture, ash and protein content, and also total carbohydrates of ~8.32, ~3.73, ~1.41 and ~26.43%, respectively. Also, the obtained pectin with the molecular weight of 472.977 kDa and total phenol content of 91.54 ± 2.92 mg GAE/g pectin had a high purity (galacturonic acid content of ~72.86%) and suitable thermal stability (degradation temperature of 252.15 °C) and also could be classified as HMP (DE of 68.37 ± 2.78%). The FTIR, 1H NMR and XRD analysis indicated that the obtained sample was rich in esterified poly-galacturonic acid and had an amorphous structure. The phenolic compounds analysis showed that the SCP extract had a concentration-dependent antioxidant effect that was comparable with ascorbic acid and BHA at high concentrations.
Collapse
Affiliation(s)
- Saeid Hosseini
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
11
|
Ait Amer Meziane I, Maizi N, Abatzoglou N, Benyoussef EH. Modelling and optimization of energy consumption in essential oil extraction processes. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Bedin S, Zanella K, Bragagnolo N, Taranto OP. IMPLICATION OF MICROWAVES ON THE EXTRACTION PROCESS OF RICE BRAN PROTEIN. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190364s20180599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Bichot A, Lerosty M, Geirnaert L, Méchin V, Carrère H, Bernet N, Delgenès JP, García-Bernet D. Soft Microwave Pretreatment to Extract P-Hydroxycinnamic Acids from Grass Stalks. Molecules 2019; 24:E3885. [PMID: 31661930 PMCID: PMC6864740 DOI: 10.3390/molecules24213885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/02/2022] Open
Abstract
The aim of this article is to provide an analysis of microwave effects on ferulic and coumaric acids (FA and CA, respectively) extraction from grass biomass (corn stalks and miscanthus). Microwave pretreatment using various solvents was first compared to conventional heating on corn stalks. Then, microwave operational conditions were extended in terms of incident power and treatment duration. Optimal conditions were chosen to increase p-hydroxycinnamic acids release. Finally, these optimal conditions determined on corn stalks were tested on miscanthus stalks to underlie the substrate incidence on p-hydroxycinnamic acids release yields. The optimal conditions-a treatment duration of 405 s under 1000 W-allowed extracting 1.38% FA and 1.97% CA in corn stalks and 0.58% FA and 3.89% CA in miscanthus stalks. The different bioaccessibility of these two molecules can explain the higher or lower yields between corn and miscanthus stalks.
Collapse
Affiliation(s)
- Aurélie Bichot
- Univ Montpellier, INRA, 102 Avenue des Etangs, CEDEX, 11100 Narbonne, France.
| | - Mickaël Lerosty
- Univ Montpellier, INRA, 102 Avenue des Etangs, CEDEX, 11100 Narbonne, France.
| | - Laureline Geirnaert
- Univ Montpellier, INRA, 102 Avenue des Etangs, CEDEX, 11100 Narbonne, France.
| | - Valérie Méchin
- INRA Institut Jean-Pierre Bourgin, CEDEX, 78026 Versailles, France.
| | - Hélène Carrère
- Univ Montpellier, INRA, 102 Avenue des Etangs, CEDEX, 11100 Narbonne, France.
| | - Nicolas Bernet
- Univ Montpellier, INRA, 102 Avenue des Etangs, CEDEX, 11100 Narbonne, France.
| | | | - Diana García-Bernet
- Univ Montpellier, INRA, 102 Avenue des Etangs, CEDEX, 11100 Narbonne, France.
| |
Collapse
|
14
|
Ramos M, Jiménez A, Garrigós MC. Il-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Extraction of phenolic compounds from Mentha aquatica: the effects of sonication time, temperature and drying method. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00843-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|