1
|
Cerrone F, Lochlainn CÓ, Callaghan T, McDonald P, O'Connor KE. Airlift bioreactor-based strategies for prolonged semi-continuous cultivation of edible Agaricomycetes. Appl Microbiol Biotechnol 2024; 108:377. [PMID: 38888638 PMCID: PMC11189342 DOI: 10.1007/s00253-024-13220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Submerged cultivation of edible filamentous fungi (Agaricomycetes) in bioreactors enables maximum mass transfer of nutrients and has the potential to increase the volumetric productivity of fungal biomass compared to solid state cultivation. These aspects are paramount if one wants to increase the range of bioactives (e.g. glucans) in convenient time frames. In this study, Trametes versicolor (M9911) outperformed four other Agaricomycetes tested strains (during batch cultivations in an airlift bioreactor). This strain was therefore further tested in semi-continuous cultivation. Continuous and semi-continuous cultivations (driven by the dilution rate, D) are the preferred bioprocess strategies for biomass production. We examined the semi-continuous cultivation of T. versicolor at dilution rates between 0.02 and 0.1 h-1. A maximum volumetric productivity of 0.87 g/L/h was obtained with a D of 0.1 h-1 but with a lower total biomass production (cell dry weight, CDW 8.7 g/L) than the one obtained at lower dilution rates (12.3 g/L at D of 0.04 and vs 13.4 g/L, at a D of 0.02 h-1). However, growth at a D of 0.1 h-1 resulted in a very short fermentation (18 h) which terminated due to washout (the specific D exceeded the maximum growth rate of the fungal biomass). At a D of 0.04 h-1, a CDW of 12.3 g/L was achieved without compromising the total residence time (184 h) of the fermentation. While the D of 0.04 h-1 and 0.07 h-1 achieved comparable volumetric productivities (0.5 g/L/h), the total duration of the fermentation at D of 0.07 h-1 was only 85 h. The highest glucan content of cells (27.8 as percentage of CDW) was obtained at a D of 0.07 h-1, while the lowest glucan content was observed in T. versicolor cells grown at a D of 0.02 h-1. KEY POINTS: • The highest reported volumetric productivity for fungal biomass was 0.87 g/L/h. • Semi-continuous fermentation at D of 0.02 h-1 resulted in 13.4 g/L of fungal biomass. • Semi-continuous fermentation at D of 0.07 h-1 resulted in fungal biomass with 28% of total glucans.
Collapse
Affiliation(s)
- Federico Cerrone
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East), University College Dublin, Belfield Campus, Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin, Ireland
| | - Conor Ó Lochlainn
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East), University College Dublin, Belfield Campus, Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin, Ireland
| | - Tony Callaghan
- Commercial Mushroom Producers, Units7/8 Newgrove Industrial Estate, Monaghan, Ireland
| | - Peter McDonald
- Commercial Mushroom Producers, Units7/8 Newgrove Industrial Estate, Monaghan, Ireland
| | - Kevin E O'Connor
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East), University College Dublin, Belfield Campus, Dublin, Ireland.
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus, Dublin, Ireland.
- Bioplastech Ltd NovaUCD, University College Dublin, Belfield Innovation Park, Dublin, Ireland.
| |
Collapse
|
2
|
Safaie N, Salehi M, Farhadi S, Aligholizadeh A, Mahdizadeh V. Lentinula edodes substrate formulation using multilayer perceptron-genetic algorithm: a critical production checkpoint. Front Microbiol 2024; 15:1366264. [PMID: 38841070 PMCID: PMC11151849 DOI: 10.3389/fmicb.2024.1366264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/19/2024] [Indexed: 06/07/2024] Open
Abstract
Shiitake (Lentinula edodes) is one of the most widely grown and consumed mushroom species worldwide. They are a potential source of food and medicine because they are rich in nutrients and contain various minerals, vitamins, essential macro- and micronutrients, and bioactive compounds. The reuse of agricultural and industrial residues is crucial from an ecological and economic perspective. In this study, the running length (RL) of L. edodes cultured on 64 substrate compositions obtained from different ratios of bagasse (B), wheat bran (WB), and beech sawdust (BS) was recorded at intervals of 5 days after cultivation until the 40th day. Multilayer perceptron-genetic algorithm (MLP-GA), multiple linear regression, stepwise regression, principal component regression, ordinary least squares regression, and partial least squares regression were used to predict and optimize the RL and running rate (RR) of L. edodes. The statistical values showed higher prediction accuracies of the MLP-GA models (92% and 97%, respectively) compared with those of the regression models (52% and 71%, respectively) for RL and RR. The high degree of fit between the forecasted and actual values of the RL and RR of L. edodes confirmed the superior performance of the developed MLP-GA models. An optimization analysis on the established MLP-GA models showed that a substrate containing 15.1% B, 45.1% WB, and 10.16% BS and a running time of 28 days and 10 h could result in the maximum L. edodes RL (10.69 cm). Moreover, the highest RR of L. edodes (0.44 cm d-1) could be obtained by a substrate containing 30.7% B, 90.4% WB, and 0.0% BS. MLP-GA was observed to be an effective method for predicting and consequently selecting the best substrate composition for the maximal RL and RR of L. edodes.
Collapse
Affiliation(s)
- Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mina Salehi
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Siamak Farhadi
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Aligholizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Valiollah Mahdizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Hamza A, Khalad A, Kumar DS. Enhanced production of mycelium biomass and exopolysaccharides of Pleurotus ostreatus by integrating response surface methodology and artificial neural network. BIORESOURCE TECHNOLOGY 2024; 399:130577. [PMID: 38479624 DOI: 10.1016/j.biortech.2024.130577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
This study aimed to enhance the production of mycelium biomass and exopolysaccharides (EPS) of Pleurotus ostreatus in submerged fermentation. Response Surface Methodology (RSM)sought to optimize culture conditions, whereas Artificial Neural Network (ANN)aimed to predict the mycelium biomass and EPS. After optimization of RSM model conditions, the maximum biomass (36.45 g/L) and EPS (6.72 g/L) were obtained at the optimum temperature of 22.9 °C, pH 5.6, and agitation of 138.9 rpm. Further, the Genetic Algorithm (GA) was employed to optimize the cultivation conditions in order to maximize the mycelium biomass and EPS production. The ANN model with an optimized network structure gave the coefficient of determination (R2) value of 0.99 and the least mean squared error of 1.9 for the validation set. In the end, a graphical user interface was developed to predict mycelium biomass and EPS production.
Collapse
Affiliation(s)
- Arman Hamza
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Abdul Khalad
- Department of Mechanical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Devarai Santhosh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Mathematical modeling characterization of mannitol production by three heterofermentative lactic acid bacteria. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Selenium-Containing Exopolysaccharides Isolated from the Culture Medium of Lentinula edodes: Structure and Biological Activity. Int J Mol Sci 2021; 22:ijms222313039. [PMID: 34884845 PMCID: PMC8657480 DOI: 10.3390/ijms222313039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, and immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-α-mannoprotein of molecular weight 4.5 × 106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure-activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells (HUVEC)) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10-100 µg/mL, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans, the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates, most likely due to a different mode of selenium binding and its higher degree of oxidation.
Collapse
|
6
|
Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
López-Legarda X, Rostro-Alanis M, Parra-Saldivar R, Villa-Pulgarín JA, Segura-Sánchez F. Submerged cultivation, characterization and in vitro antitumor activity of polysaccharides from Schizophyllum radiatum. Int J Biol Macromol 2021; 186:919-932. [PMID: 34280450 DOI: 10.1016/j.ijbiomac.2021.07.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
Production of polysaccharides by white-rot-fungi in submerged cultivation has several advantages due to process control. This work deals with the submerged cultivation, extraction and antitumor activity of polysaccharides from a wild strain of Schizophyllum radiatum isolated from a tropical forest of Colombia. The mushroom was cultivated in laboratory conditions, and classified by classical and molecular taxonomy. Submerged cultivation was performed in a bioreactor of 5 L using a ligninolytic residue as substrate. The fermentation conditions were 30 ± 1 °C, pH 4.5, 300 rpm and 1.5 vvm of air for 4 days. The yields were 16.8 g/L (w/v) of biomass, and after extraction, 0.6 g/L of water-soluble exopolysaccharide (SEPS) and 2.01 % (w/w) of water-soluble intrapolysaccharide (SIPS) were obtained. In each extract total carbohydrate, glucans and protein contents were determined. Also, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), high performance liquid chromatography with refraction index detection (HPLC-RI), high performance gel permeation chromatography (HPGPC) and Nuclear Magnetic Resonance (NMR) analysis were performed. Results indicated that SEPS and SIPS are heteropolysaccharides with amorphous structure and high molecular weights. Antitumor and immunostimulant activity was evaluated in different cancer cell lines. The results suggest these polysaccharides have direct and indirect antitumor activity activating immune cells such as macrophages. These findings enhance our knowledge about new sources of fungal metabolites that serve as adjuvant, cheaper and less harmful alternatives to cancer treatment.
Collapse
Affiliation(s)
- Xiomara López-Legarda
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia.
| | - Magdalena Rostro-Alanis
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Roberto Parra-Saldivar
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Janny A Villa-Pulgarín
- Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Calle 51 # 51 27, Medellín, Colombia
| | - Freimar Segura-Sánchez
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia.
| |
Collapse
|
8
|
Meng Q, Chen Z, Chen F, Zhang Z, Gao W. Optimization of ultrasonic-assisted extraction of polysaccharides from Hemerocallis citrina and the antioxidant activity study. J Food Sci 2021; 86:3082-3096. [PMID: 34146417 DOI: 10.1111/1750-3841.15806] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
The present study discussed the optimization of the ultrasonic-assisted extraction of polysaccharides from daylily polysaccharides (DPs). The extracted crude polysaccharides were further separated and purified, and the antioxidant activities including 1,1-diphenyl-2-111 picrylhydrazyl (DPPH) radical scavenging, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radical scavenging, hydroxyl radical scavenging, and ferric-reducing antioxidant power (FRAP) activities of the obtained fractions were also evaluated. The results showed that the optimal ultrasonic-assisted extraction parameters with DPs yield of 15.25 ± 1.13% were water to powder ratio of 25 ml/g, extraction power of 694 W, extraction temperature of 71°C, extraction time of 38 min, and three times extraction. By DEAE Sepharose Fast Flow column, four water-soluble polysaccharide fractions (DP-1, DP-2, DP-3, and DP-4) were successfully obtained. Monosaccharide component analysis showed that the four obtained fractions were all hetero-polysaccharides that mainly contained rhamnose, arabinose, fructose, galactose, glucose, galacturonic acid, and glucuronic acid in different molar ratios. All the four DP fractions did show obvious antioxidant activities in vitro, and the DP-3 component had relatively high ABTS free radical scavenging activity. Overall, our research showed that DPs could provide cheap raw materials for the development of natural antioxidants in medicines, functional foods, and even cosmetics. PRACTICAL APPLICATION: This article deals with the optimization of the ultrasonic-assisted extraction of polysaccharides from daylily and its antioxidant activities. The results showed that the optimal ultrasonic-assisted extraction yield of DPs was 15.25 ± 1.13%. By DEAE Sepharose Fast Flow column, four water-soluble polysaccharide fractions were successfully obtained, and all the four DP fractions did show obvious antioxidant activities in vitro. Daylily polysaccharides could provide cheap raw materials for the development of natural antioxidants in medicines, functional foods, and even cosmetics.
Collapse
Affiliation(s)
- Qingran Meng
- Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Zhihong Chen
- Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Zhiguo Zhang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Wenjie Gao
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, P.R. China
| |
Collapse
|
9
|
López-Legarda X, Arboleda-Echavarría C, Parra-Saldívar R, Rostro-Alanis M, Alzate JF, Villa-Pulgarín JA, Segura-Sánchez F. Biotechnological production, characterization and in vitro antitumor activity of polysaccharides from a native strain of Lentinus crinitus. Int J Biol Macromol 2020; 164:3133-3144. [DOI: 10.1016/j.ijbiomac.2020.08.191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
10
|
Sarris D, Philippoussis A, Mallouchos A, Diamantopoulou P. Valorization of low-cost, carbon-rich substrates by edible ascomycetes and basidiomycetes grown on liquid cultures. FEMS Microbiol Lett 2020; 367:5923550. [PMID: 33053163 DOI: 10.1093/femsle/fnaa168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Three ascomycetes (Morchella vulgaris AMRL 36, M. elata AMRL 63, Tuber aestivum AMRL 364) and four basidiomycetes strains (Lentinula edodes AMRL 124 and 126, Agaricus bisporus AMRL 208 and 209) were screened for their ability to grow on liquid static flask cultures of glucose, glycerol, molasses and waste flour-rich hydrolysates with C/N ratio of 20 and produce biomass, exopolysaccharides and lipids. The profile of lipid fatty acids was also assessed. Selected strains were furthermore cultivated in C/N = 50. Results showed that substrate consumption, biomass formation and secondary metabolites production were strain, substrate and C/N ratio dependent. The maximum biomass (X), lipid (L) and exopolysaccharides (EPS) values noted were Xmax = 25.2 g/L (C/N = 20; molasses) and Lmax = 6.51 g/L (C/N = 50; rice cereal hydrolysates) by T. aestivum strain AMRL 364 and EPSmax = 2.41 g/L by M. elata strain AMRL 63 (C/N = 50; molasses), respectively. When C/N ratio of 50 was applied, biomass, lipid production and substrate consumption seem to be negatively affected in most of the trials. The adaptation and capability of the mushroom strains to be cultivated on substrates based on agro-industrial waste streams and infant food of expired shelf date offers the opportunity to set a circular oriented bioprocess.
Collapse
Affiliation(s)
- Dimitris Sarris
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece.,Department of Food Science & Nutrition, School of Environment, University of the Aegean, Lemnos, Myrina 81400, Lemnos, Greece
| | - Antonios Philippoussis
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Iera Odos 75, Athens 11855, Greece
| | - Panagiota Diamantopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization 'Demeter', Lycovryssi, Sof. Venizelou 1, Lykovrissi 14123, Greece
| |
Collapse
|
11
|
Lee MH, Chao CH, Hsu YC, Lu MK. Production, characterization, and functions of sulfated polysaccharides from zinc sulfate enriched cultivation of Antrodia cinnamomea. Int J Biol Macromol 2020; 159:1013-1021. [PMID: 32417542 DOI: 10.1016/j.ijbiomac.2020.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/18/2023]
Abstract
This research utilized zinc sulfate enriched cultural conditions to produce sulfated polysaccharides from Antrodia cinnamomea (denoted as ZnFSPS) and physiochemically characterize functional and mechanical investigations of ZnFSPS. The maximum SPS yield reached a value of 6.68% when A. cinnamomea was fed zinc sulfate with 250 mM (denoted as Zn250). Zn250 had a maximal inhibitory effect on LPS-induced tumor necrosis factor (TNF-α) release in RAW264.7 macrophage. Zn250 contained the highest area percentage of molecular weight of 178.5, 105.1, and 1.56 kDa at values of 19.08, 15.09, and 5.04. Zn250 contained three times the sulfate content as compared with the control. Mechanism studies revealed a novel finding that Zn250 inhibited the LPS-induced RAW264.7 macrophage inflammation and selectively blocked pAKT, pERK and p38. Zn250 also attenuated the LPS-induced IkB-α degradation. In addition, ZnFSPS interfered with lung cancer cell H1975 TGFRI/FAK/Slug signaling. These results suggest ZnFSPS plays roles in regulating inflammatory and anti-lung cancer activity.
Collapse
Affiliation(s)
- Meng-Hsin Lee
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan.
| |
Collapse
|
12
|
A critical review on submerged production of mushroom and their bioactive metabolites. 3 Biotech 2020; 10:337. [PMID: 32670737 DOI: 10.1007/s13205-020-02333-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Mushrooms are ubiquitous in nature. Even though humankind has been consuming mushrooms for ages, their medicinal and nutraceutical properties are not used to its fullest potential in the present market. Edible mushrooms are not only a cheap and nutritious option to mitigate malnutrition, but they also produce effective biomass. Submerged fermentation (SmF) is not only a cost-effective method to produce biomass along with exquisite bioactive metabolites but it also reduces the chances of contamination and the time of production. Therefore, this study unveils the bioactive metabolites being produced by mushrooms. Moreover, it also showcases the recent advances in the areas of bio-active compounds and their judicious implementations in daily life and pharmaceutical industries. Moreover, there is a distinct lack in utilizing the potential benefits of bioactive compounds from mushroom unless in vivo and in vitro studies are demonstrated.
Collapse
|