1
|
Balasubramanian VK, Muthuramalingam JB, Chen YP, Chou JY. Recent trends in lactic acid-producing microorganisms through microbial fermentation for the synthesis of polylactic acid. Arch Microbiol 2023; 206:31. [PMID: 38127148 DOI: 10.1007/s00203-023-03745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Polylactic acid (PLA) is a range of unique bioplastics that are bio-based and biodegradable. PLA is currently driving market expansion for lactic acid (LA) due to its high demand as a building block in production. One of the most practical and environmentally benign techniques for synthesising PLA is through enzymatic polymerisation of microbial LA monomers. However, microbial LA fermentation does have some limitations. Firstly, it requires the use of a nutritionally rich medium. Secondly, LA production can be disrupted by bacteriophage infection or other microorganisms. Lastly, the yield can be low due to the formation of by-products through heterofermentative pathway. Considering the potential use of PLA as a replacement for conventional petrochemical-based polymers in industrial applications, researchers are focused on exploring the diversity of LA-producing microorganisms from various niches. Their goal is to study the functional properties of these microorganisms and their ability to produce industrially valuable metabolites. This review highlights the advantages and disadvantages of lactic acid-producing microorganisms used in microbial fermentation for PLA synthesis.
Collapse
Affiliation(s)
- Vignesh Kumar Balasubramanian
- Department of Botany, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan
| | | | - Yen-Po Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, South Dist., Taichung City, 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, 500, Taiwan.
| |
Collapse
|
2
|
Wu S, Shi S, Liu R, Wang C, Li J, Han L. The transformations of cellulose after concentrated sulfuric acid treatment and its impact on the enzymatic saccharification. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:36. [PMID: 36869393 PMCID: PMC9985267 DOI: 10.1186/s13068-023-02293-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND The dense structure of cellulose lowers its reactivity and hinders its applications. Concentrated sulfuric acid is an ideal solvent to dissolve cellulose and thus has been used widely to treat cellulose. However, the changes of cellulose after reaction with concentrated sulfuric acid at near-limit S/L ratio and its effect on enzymatic saccharification still need further investigation. RESULTS In this study, the interactions between cellulose (Avicel) and 72% sulfuric acid at very low acid loading conditions of 1:2 to 1:3 (S/L ratio) were studied for the enhanced production of glucose. The Avicel gradually transformed from cellulose I structure to cellulose II structure during the sulfuric acid treatment. Other physicochemical characteristics of Avicel also changed dramatically, such as the degree of polymerization, particle size, crystallinity index, and surface morphology. After acid treatment, both the yield and productivity of glucose from cellulose increased significantly under a very low enzyme loading of 5 FPU/g-cellulose. The glucose yields for raw cellulose and acid-treated (30 min) were 57% and 85%, respectively. CONCLUSION Low loadings of concentrated sulfuric acid were proven to be effective to break the recalcitrance of cellulose for enzymatic saccharification. A positive correlation between cellulose CrI and glucose yield was found for concentrated sulfuric acid-treated cellulose, which was opposite to previous reports. Cellulose II content was found to be an important factor that affects the conversion of cellulose to glucose.
Collapse
Affiliation(s)
- Shengbo Wu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Suan Shi
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ruotong Liu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chun Wang
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Lujia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
3
|
Hamid A, Zafar A, Latif S, Peng L, Wang Y, Liaqat I, Afzal MS, ul-Haq I, Aftab MN. Enzymatic hydrolysis of low temperature alkali pretreated wheat straw using immobilized β-xylanase nanoparticles. RSC Adv 2023; 13:1434-1445. [PMID: 36686938 PMCID: PMC9814908 DOI: 10.1039/d2ra07231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
A low temperature alkali (LTA) pretreatment method was used to treat wheat straw. In order to obtain good results, different factors like temperature, incubation time, NaOH concentration and solid to liquid ratio for the pretreatment process were optimized. Wheat straw is a potential biomass for the production of monomeric sugars. The objective of the current study was to observe the saccharification (%) of wheat straw with immobilized magnetic nanoparticles (MNPs). For this purpose, immobilized MNPs of purified β-xylanase enzyme was used for hydrolysis of pretreated wheat straw. Wheat straw was pretreated using the LTA method and analyzed by SEM analysis. After completion of the saccharification process, saccharification% was calculated by using a DNS method. Scanning electron micrographs revealed that the hemicellulose, cellulose and lignin were partially removed and changes in the cell wall structure of the wheat straw had caused it to become deformed, increasing the specific surface area, so more fibers of the wheat straw were exposed to the immobilized β-xylanase enzyme after alkali pretreatment. The maximum saccharification potential of wheat straw was about 20.61% obtained after pretreatment with optimized conditions of 6% NaOH, 1/10 S/L, 30 °C and 72 hours. Our results indicate the reusability of the β-xylanase enzyme immobilized magnetic nanoparticles and showed a 15% residual activity after the 11th cycle. HPLC analysis of the enzyme-hydrolyzed filtrate also revealed the presence of sugars like xylose, arabinose, xylobiose, xylotriose and xylotetrose. The time duration of the pretreatment has an important effect on thermal energy consumption for the low-temperature alkali method.
Collapse
Affiliation(s)
- Attia Hamid
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| | - Asma Zafar
- Faculty of Science and Technology, University of Central PunjabLahorePakistan
| | | | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture UniversityWuhanChina
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College UniversityLahorePakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT)LahorePakistan
| | - Ikram ul-Haq
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| |
Collapse
|
4
|
Qiu Z, Han X, Fu A, Jiang Y, Zhang W, Jin C, Li D, Xia J, He J, Deng Y, Xu N, Liu X, He A, Gu H, Xu J. Enhanced cellulosic d-lactic acid production from sugarcane bagasse by pre-fermentation of water-soluble carbohydrates before acid pretreatment. BIORESOURCE TECHNOLOGY 2023; 368:128324. [PMID: 36400276 DOI: 10.1016/j.biortech.2022.128324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
After several rounds of milling process for sugars extraction from sugarcane, certain amounts of water-soluble carbohydrates (WSC) still remain in sugarcane bagasse. It is a bottleneck to utilize WSC in sugarcane bagasse biorefinery, since these sugars are easily degraded into inhibitors during pretreatment. Herein, a simple pre-fermentation step before pretreatment was conducted, and 98 % of WSC in bagasse was fermented into d-lactic acid. The obtained d-lactic acid was stably preserved in bagasse and 5-hydroxymethylfurfural (HMF) generation was sharply reduced from 46.0 mg/g to 6.2 mg/g of dry bagasse, after dilute acid pretreatment. Consequently, a higher d-lactic acid titer (57.0 g/L vs 33.2 g/L) was achieved from the whole slurry of the undetoxified and pretreated sugarcane bagasse by one-pot simultaneous saccharification and co-fermentation (SSCF), with the overall yield of 0.58 g/g dry bagasse. This study gave an efficient strategy for enhancing lactic acid production using the lignocellulosic waste from sugar industry.
Collapse
Affiliation(s)
- Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China; Key Laboratory of Botany of State Ethnic Affairs Commission, Hebei Normal University for Nationalities, Chengde, Hebei, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Anqing Fu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Yalan Jiang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Wenyue Zhang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Ci Jin
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Dengchao Li
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Yuanfang Deng
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Hanqi Gu
- Key Laboratory of Botany of State Ethnic Affairs Commission, Hebei Normal University for Nationalities, Chengde, Hebei, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China.
| |
Collapse
|
5
|
Sáenz de Miera B, Cañadas R, Santiago R, Díaz I, González-Miquel M, González EJ. A pathway to improve detoxification processes by selective extraction of phenols and sugars from aqueous media using sustainable solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Pangestu R, Kahar P, Kholida LN, Perwitasari U, Thontowi A, Fahrurrozi, Lisdiyanti P, Yopi, Ogino C, Prasetya B, Kondo A. Harnessing originally robust yeast for rapid lactic acid bioproduction without detoxification and neutralization. Sci Rep 2022; 12:13645. [PMID: 35953496 PMCID: PMC9372150 DOI: 10.1038/s41598-022-17737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Acidic and chemical inhibitor stresses undermine efficient lactic acid bioproduction from lignocellulosic feedstock. Requisite coping treatments, such as detoxification and neutralizing agent supplementation, can be eliminated if a strong microbial host is employed in the process. Here, we exploited an originally robust yeast, Saccharomyces cerevisiae BTCC3, as a production platform for lactic acid. This wild-type strain exhibited a rapid cell growth in the presence of various chemical inhibitors compared to laboratory and industrial strains, namely BY4741 and Ethanol-red. Pathway engineering was performed on the strain by introducing an exogenous LDH gene after disrupting the PDC1 and PDC5 genes. Facilitated by this engineered strain, high cell density cultivation could generate lactic acid with productivity at 4.80 and 3.68 g L−1 h−1 under semi-neutralized and non-neutralized conditions, respectively. Those values were relatively higher compared to other studies. Cultivation using real lignocellulosic hydrolysate was conducted to assess the performance of this engineered strain. Non-neutralized fermentation using non-detoxified hydrolysate from sugarcane bagasse as a medium could produce lactic acid at 1.69 g L−1 h−1, which was competitive to the results from other reports that still included detoxification and neutralization steps in their experiments. This strategy could make the overall lactic acid bioproduction process simpler, greener, and more cost-efficient.
Collapse
Affiliation(s)
- Radityo Pangestu
- Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.,National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Prihardi Kahar
- Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Lutfi Nia Kholida
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Urip Perwitasari
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Ahmad Thontowi
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Fahrurrozi
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Puspita Lisdiyanti
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Yopi
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia.,National Standardization Agency of Indonesia (BSN), Gedung Badan Pengkajian Dan Penerapan Teknologi (BPPT), Jl. M.H. Thamrin No. 8, Jakarta, 10340, Indonesia
| | - Chiaki Ogino
- Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.
| | - Bambang Prasetya
- National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Bogor, West Java, 16911, Indonesia.,National Standardization Agency of Indonesia (BSN), Gedung Badan Pengkajian Dan Penerapan Teknologi (BPPT), Jl. M.H. Thamrin No. 8, Jakarta, 10340, Indonesia
| | - Akihiko Kondo
- Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan.,Graduate School of Science, Technology, and Innovation (STIN), Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
7
|
Ma X, Gao M, Liu S, Li Y, Sun X, Wang Q. An innovative approach for reducing the water and alkali consumption in the lactic acid fermentation via the reuse of pretreated liquid. BIORESOURCE TECHNOLOGY 2022; 352:127108. [PMID: 35381334 DOI: 10.1016/j.biortech.2022.127108] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
This study focuses on enhancing lactic acid (LA) production and declining water and alkali consumption by reusing the pretreated liquid (PL) of spent mushroom substance (SMS) in the co-fermentation of food waste (FW) and SMS. First, the compositions of PL are identified, and the effects of the PL inhibitors on enzymatic hydrolysis and fermentation are explored. The PL phenol concentrations exceeded 2 g/L, which affected LA fermentation. Therefore, PL phenols were removed by adjusting the pH value, and the detoxified PL (DPL) phenol concentrations were 70.3% lower than those of PL. Different PL:DPL ratios were established to reuse in the fermentation process, and the LA concentration in the 50% PL + 50% DPL group was the highest (56.7 g/L). Then, pretreated SMS was not water-washed, and a neutralizer was prepared with the PL, LA production remained unchanged. Water and NaOH consumption decreased by 84.6% and 52.0%, respectively, and no wastewater was produced.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shuo Liu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yuan Li
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
8
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
Nagarajan S, Ranade VV. Valorizing Waste Biomass via Hydrodynamic Cavitation and Anaerobic Digestion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
- Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
10
|
Nwamba MC, Song G, Sun F, Mukasekuru MR, Ren H, Zhang Q, Cao T, Wang H, Sun H, Hong J. Efficiency enhancement of a new cellulase cocktail at low enzyme loading for high solid digestion of alkali catalyzed atmospheric glycerol organosolvent pre-treated sugarcane bagasse. BIORESOURCE TECHNOLOGY 2021; 338:125505. [PMID: 34273627 DOI: 10.1016/j.biortech.2021.125505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The acquisition during biomass saccharification of elevated levels of fermentable sugars with lower cellulase concentration is central to ensuring an economically viable and industrially relevant hydrolytic process. Thus, using a new cellulase preparation (LT4) at low cellulase loading (2 mg protein/g dried substrate), this study assessed the possible boosting effect of integrating accessory enzymes and additives on high-solids hydrolysis of sugarcane bagasse via fed-batch feeding. Hydrolysis which commenced with initial 8% solids loading and subsequent substrate feeding of 4% solids at 6 h, 18 h, and 24 h respectively, proved optimal for the 20% high-solids saccharification producing 158 g/L total sugars and 83% glucose yield after 72 h with the combined optimized additives and accessory enzymes. The results obtained indicate that the integration of accessory enzymes and additives offers a benignant approach to minimizing the enzyme load and cost of high solids saccharification of lignocellulosic heteropolymers while also boosting enzyme hydrolytic performance.
Collapse
Affiliation(s)
- Marknoah Chinenye Nwamba
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Marie Rose Mukasekuru
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Zhang
- Vland Biotech Ltd Co., Qingdao 266102, Shandong Province, China
| | - Tishuang Cao
- Vland Biotech Ltd Co., Qingdao 266102, Shandong Province, China
| | - Huaming Wang
- Vland Biotech Ltd Co., Qingdao 266102, Shandong Province, China
| | - Haiyan Sun
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Baral P, Kumar V, Agrawal D. Emerging trends in high-solids enzymatic saccharification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform. Crit Rev Biotechnol 2021; 42:873-891. [PMID: 34530648 DOI: 10.1080/07388551.2021.1973363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For the techno-commercial success of any lignocellulosic biorefinery, the cost-effective production of fermentable sugars for the manufacturing of bio-based products is indispensable. High-solids enzymatic saccharification (HSES) is a straightforward approach to develop an industrially deployable sugar platform. Economic incentives such as reduced capital and operational expenditure along with environmental benefits in the form of reduced effluent discharge makes this strategy more lucrative for exploitation. However, HSES suffers from the drawback of non-linear and disproportionate sugar yields with increased substrate loadings. To overcome this bottleneck, researchers tend to perform HSES at high enzyme loadings. Nonetheless, the production costs of cellulases are one of the key contributors that impair the entire process economics. This review highlights the relentless efforts made globally to attain a high-titer of sugars and their fermentation products by performing efficient HSES at low cellulase loadings. In this context, technical innovations such as advancements in new pretreatment strategies, next-generation cellulase cocktails, additives, accessory enzymes, novel reactor concepts and enzyme recycling studies are especially showcased. This review further covers new insights, learnings and prospects in the area of lignocellulosic bioprocessing.
Collapse
Affiliation(s)
- Pratibha Baral
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, India
| |
Collapse
|
12
|
Baral P, Pundir A, Kurmi A, Singh R, Kumar V, Agrawal D. Salting-out assisted solvent extraction of L (+) lactic acid obtained after fermentation of sugarcane bagasse hydrolysate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
l-lactic acid production using the syrup obtained in biorefinery of carrot discards. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|