1
|
Widhanti A, Iwansyah AC, Yelliantty, Kurniawan T, Pramareti GMJ, Indriati A, Hamid HA. Effects of foam mat-drying condition on physicochemical and antioxidant properties of instant Physalis angulata L. enriched with Moringa oleifera L. extract. AN ACAD BRAS CIENC 2024; 96:e20240006. [PMID: 39630800 DOI: 10.1590/0001-3765202420240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/29/2024] [Indexed: 12/07/2024] Open
Abstract
Food drying is still a crucial step in the food manufacturing process for food preservation, and the foam-mat drying method can be utilized to further enhance food preservation. This study aims to develop an instant L. powder enriched with Moringa oleifera L. extract and to evaluate the effect of foam mat drying conditions on physicochemical and antioxidant properties.The experimental design used a factorial completely randomized block design (FCBD), with triplicates. Based on the results showed that the interaction between the different forms of moringa extract, when added, and drying temperature affected color, water activity, bulk density, hygroscopicity, total acid titration, moisture content, ABTS, antioxidant activity and total flavonoid contents (p<0.05) but did not affect solubility, total soluble solids, flow rate, pH, DPPH antioxidant activity and total phenolic contents (p>0.05). Samples dried at a temperature of 70°C (T3), both liquid (F1) and microencapsulated (F2), exhibited the best physicochemical and antioxidant properties. These findings confirmed the suitability of foam mat drying to produce P. angulata instant powder enriched with M. oleifera extract for functional food ingredients.
Collapse
Affiliation(s)
- Ajeng Widhanti
- Pasudan University, Faculty of Engineering, Department of Technology Food, Jl Dr. Setiabudi, No. 193, Bandung, West Java 40153, Indonesia
| | - Ade Chandra Iwansyah
- National Research and Innovation Agency, Research Center for Technology and Food Processing, Jl. Jogja-Wonosari km 31,5 Gunungkidul, Yogyakarta 55861, Indonesia
| | - Yelliantty
- Pasudan University, Faculty of Engineering, Department of Technology Food, Jl Dr. Setiabudi, No. 193, Bandung, West Java 40153, Indonesia
| | - Taufik Kurniawan
- National Research and Innovation Agency, Research Center for Technology and Food Processing, Jl. Jogja-Wonosari km 31,5 Gunungkidul, Yogyakarta 55861, Indonesia
| | - Gradia Martin Jati Pramareti
- National Research and Innovation Agency, Research Center for Technology and Food Processing, Jl. Jogja-Wonosari km 31,5 Gunungkidul, Yogyakarta 55861, Indonesia
| | - Ashri Indriati
- National Research and Innovation Agency, Research Center for Appropriate Technology, Jl. KS Tubun No. 5 Subang, West Java 41213, Indonesia
| | - Hazrulrizawati Abd Hamid
- Universiti Malaysia Pahang Al-Sultan Abdullah, Faculty of Industrial Sciences and Technology, Lebuhraya Tun Khalil Yaakob, 26300, Gambang, Kuantan, Malaysia
| |
Collapse
|
2
|
Hossain MA, Ahmed T, Ferdaus J, Zzaman W. Optimization of the foam-mat drying process to develop high-quality tomato powder: A response surface methodology approach. Heliyon 2024; 10:e39811. [PMID: 39559223 PMCID: PMC11570490 DOI: 10.1016/j.heliyon.2024.e39811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
This research aimed to estimate the optimum formulation of process parameters in making tomato powder with optimal physicochemical properties using foam-mat drying. The egg albumin (EA) concentration (1-5%), carboxymethyl cellulose (CMC) concentration (1-1.5 %), and drying temperature (60-70 °C) were employed as independent variables in optimizing through Response Surface Methodology (RSM) in combination with Box-Behnken experimental design (BBD). Based on the total 17 runs of BBD, foam-mat dried powder showed physicochemical properties such as 0.18-0.33 g/cm3 foam density, 178.54-350 % foam expansion, 40-94 % foam stability, 46.80-62 % water soluble index (WSI), 1.13-2.96 water absorption index (WAI), 1.51-2 °Brix TSS, 2.30-3.98 mg/100 mL ascorbic acid, 0.22-0.38 % titratable acidity, and color (L∗: 29.26-48.07, a∗: 9.73-16.86, and b∗: 6.81-21.56). Furthermore, the ANOVA findings revealed the correlation of determination (R2) exceeding 85 % for the models, suggesting that the interaction between the responses and the prediction of the implied model is suitable. The optimal formulation from RSM was 4.59 % EA, 0.70 % CMC, and 60 °C drying temperature. Under the optimized conditions, the experimental values were 0.19 ± 0.03 g/cm3 foam density, 346.60 ± 3.35 % foam expansion, 89.05 ± 2.80 % foam stability, 55.56 ± 3.22 % WSI, 2.49 ± 0.09 WAI, 1.84 ± 0.15 °Brix TSS, 2.93 ± 0.10 mg/100 mL ascorbic acid, 0.39 ± 0.02 % titratable acidity, 46.95 ± 6.35 L∗, 17.54 ± 1.50 a∗, and 21.85 ± 0.74 b∗. The optimized parameters were verified, and there was good agreement between the experimental results and the predicted values (residual standard error (RSE) ≤ 5).
Collapse
Affiliation(s)
- Mohammad Afzal Hossain
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Ahmed
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Jannatul Ferdaus
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Wahidu Zzaman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
3
|
Chaipoot S, Phongphisutthinant R, Wiriyacharee P, Kanthakat G, Wongwatcharayothin W, Somjai C, Danmek K, Chuttong B. Application of Carboxymethyl Cellulose and Glycerol Monostearate as Binder Agents for Protein Powder Production from Honey Bee Brood Using Foam-Mat Drying Technique. Foods 2024; 13:2265. [PMID: 39063350 PMCID: PMC11276076 DOI: 10.3390/foods13142265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the development of protein powder from honey bee drone broods using foam-mat drying, a scalable method suitable for community enterprises, as well as the preservation of bee broods as a food ingredient. Initially, honey bee broods were pre-treated by boiling and steaming, with steamed bee brood (S_BB) showing the highest protein content (44.71 g/100 g dry basis). A factorial design optimized the powder formulation through the foam-mat drying process, incorporating varying concentrations of S_BB, glycerol monostearate (GMS), and carboxymethyl cellulose (CMC). The physicochemical properties of the resulting powder, including yield, color spaces, water activity, solubility, protein content, and total amino acids, were evaluated. The results showed that foam-mat drying produced a stable protein powder. The binders (CMC and GMS) increased the powder's yield and lightness but negatively affected the hue angle (yellow-brown), protein content, and amino acid content. The optimal quantities of the three variables (S_BB, GMS, and CMC) were determined to be 30 g, 6 g, and 1.5 g, or 80%, 16%, and 4%, respectively. Under this formulation, the protein powder exhibited a protein content of 19.89 g/100 g. This research highlights the potential of bee brood protein powder as a sustainable and nutritious alternative protein source, enhancing food diversification and security.
Collapse
Affiliation(s)
- Supakit Chaipoot
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pairote Wiriyacharee
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (G.K.); (W.W.)
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Gochakorn Kanthakat
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (G.K.); (W.W.)
| | | | - Chalermkwan Somjai
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand;
| | - Khanchai Danmek
- School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Noguera NH, Noguera DCLH, Machado APDF, Reguengo LM, Nascimento RDPD. Emerging berries from the Brazilian Amazon and Atlantic Forest biomes: new sources of bioactive compounds with potential health benefits. Food Funct 2024; 15:5752-5784. [PMID: 38753200 DOI: 10.1039/d4fo00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Brazil has a broad geographic biodiversity spread across its six different biomes. However, it has been suffering from the abusive exploitation of its resources, which poses a threat to the local fauna and flora. The Amazon and Atlantic Forest, for example, are birthplaces to rare and edible native species, such as bacaba (Oenocarpus bacaba, Arecaceae) and camu-camu (Myrciaria dubia, Myrtaceae), and cereja-do-Rio Grande (Eugenia involucrata, Myrtaceae) and grumixama (Eugenia brasiliensis, Myrtaceae), respectively. These plants produce fruits which are sources of macro and micronutrients, including sugars, dietary fibers, vitamins, minerals, and/or lipids. Nutritionally, their consumption have the ability to reach partially or totally the daily recommendations for adults of some nutrients. More recently, these fruits have also been exposed as interesting sources of minor bioactive compounds, such as carotenoids, terpenes, and/or polyphenols, the latter which include anthocyanins, phenolic acids, and tannins. Particularly, bacaba stands out for being a rich source of polyunsaturated fatty acids (around 22%, dry weight) and dietary fibers (6.5-21%, dry weight); camu-camu has very high contents of vitamin C (up to 5000 mg per 100 g of pulp, dry basis); and cereja-do-Rio-Grande and grumixama are abundant sources of anthocyanins. Although they are still underexplored, several in vitro and in vivo studies with different parts of the fruits, including the peel, seed, and pulp, indicate their health potential through anti-oxidative, anti-obesity, antihyperglycemic, antidyslipidemic, antimicrobial, and/or anticancer effects. All things considered, the focus of this research was to highlight the bioactive potential and health impact of native fruits from the Amazon and Atlantic Forest biomes.
Collapse
Affiliation(s)
- Nathan Hargreaves Noguera
- Universidade Estadual de Campinas, Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil
| | - Dyana Carla Lima Hargreaves Noguera
- Universidade Estadual de Campinas, Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Federal da Grande Dourados, Faculdade de Engenharia, 79804-970, Dourados, Mato Grosso do Sul, Brazil
| | - Livia Mateus Reguengo
- Universidade Estadual de Campinas, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil.
| | - Roberto de Paula do Nascimento
- Universidade Estadual de Campinas, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Ozcelik MM, Aydin S, Aydin E, Ozkan G. Preserving nutrient content in red cabbage juice powder via foam-mat hybrid microwave drying: Application in fortified functional pancakes. Food Sci Nutr 2024; 12:1340-1355. [PMID: 38370060 PMCID: PMC10867499 DOI: 10.1002/fsn3.3847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024] Open
Abstract
Red cabbage, a highly nutritious cool-season cruciferous vegetable, is rich in anthocyanins; however, the instability of anthocyanins during processing and storage poses challenges. This study aimed to optimize the foam-mat drying process of red cabbage juice (RCJ) with a high anthocyanin content using a hybrid microwave hot air-drying system (MW-HAD) as a dehydration method compared to conventional techniques (HAD) using response surface methodology (RSM). Additionally, the produced red cabbage juice powder (RCJP) was used to enrich the pancake formulation. The developed model exhibited a high degree of reliability with optimal conditions and was determined for microwave power, temperature, foaming agent carboxymethylcellulose (CMC), and egg white protein (EWP) as 360 W, 60°C, 0.3%, and 1.2%, respectively. Moisture content (%) was decreased from 93.47 to 8.62 at optimum process conditions. In comparison to the control (60°C), foam mat drying with the MW-HAD hybrid system reduced the drying time (DT) by more than 90.9% due to the higher drying rate, while many physicochemical properties, especially total anthocyanin content (TAC), were better preserved. Utilization of RCJP in the production of anthocyanin-rich functional pancakes resulted in enhanced nutritional qualities compared to control pancakes with increased protein (35.07%), total phenolic (75.8%), dietary fiber (82.9%), and anthocyanin content (100%). In conclusion, MW-HAD demonstrates significant potential as a promising drying method to reduce the DT and preserve the physicochemical properties of RCJP. Furthermore, the application of the optimized RCJP in anthocyanin-rich functional pancakes highlights improved nutritional qualities, making a substantial contribution to the advancement of functional foods.
Collapse
Affiliation(s)
- Muhammed Mustafa Ozcelik
- Department of Food Engineering, Faculty of Engineering and Natural SciencesSuleyman Demirel UniversityIspartaTurkey
| | - Sedef Aydin
- Department of Food Engineering, Faculty of Engineering and Natural SciencesSuleyman Demirel UniversityIspartaTurkey
| | - Ebru Aydin
- Department of Food Engineering, Faculty of Engineering and Natural SciencesSuleyman Demirel UniversityIspartaTurkey
| | - Gulcan Ozkan
- Department of Food Engineering, Faculty of Engineering and Natural SciencesSuleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
6
|
Cakmak H, Ozyurt VH. Effect of Foam-mat Drying on Bioactive, Powder and Thermal Properties of Carrot Juice Powders. AN ACAD BRAS CIENC 2023; 95:e20220554. [PMID: 37878904 DOI: 10.1590/0001-3765202320220554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/02/2023] [Indexed: 10/27/2023] Open
Abstract
Foam-mat drying is a promising method due to involvement of proteins as foaming agent which acts like a wall material wrapping around bioactives and retards their degradation. In this study, powder properties of foam-mat dried carrot juice powders including 15% egg albumen (EA) and 15% egg albumen+ 10% whey protein isolate (WPI) during 90 days of storage at room conditions were evaluated by means of physical, chemical, thermal (DSC and TGA) and microstructural (SEM) analyses. The powder flow properties (wettability, hygroscopicity, degree of caking, Carr index and Hausner ratio) have been significantly affected from the moisture uptake during storage; however, powder flow properties of 15% EA+ 10% WPI powders were found to be better than 15% EA powders as it was also confirmed by particle diameter distributions that remained the same before and after the storage period. Besides, the total antioxidant, phenolic and carotenoid contents of 15% EA+ 10% WPI carrot powder was found comparably higher than 15% EA powders due to possible encapsulating mechanism of whey proteins. In addition to delaying of physical and chemical deteriorations in powders with WPI incorporation, thermal stability of the foam-mat dried carrot juice powders was also improved in 15% EA+ 10% WPI powder.
Collapse
Affiliation(s)
- Hulya Cakmak
- Department of Food Engineering, Hitit University, Faculty of Engineering, 19030 Corum, Turkey
| | - Vasfiye H Ozyurt
- Department of Gastronomy and Culinary Arts, Mugla Sitki Kocman University, Faculty of Tourism, 48000 Mugla, Turkey
| |
Collapse
|
7
|
Paiva YF, Figueirêdo RMFD, Queiroz AJDM, Amadeu LTS, Reis CGD, Santos FSD, Lima AGBD, Silva WPD, Gomes JP, Leite DDDF, Lima TLBD. Tropical Red Fruit Blend Foam Mat Drying: Effect of Combination of Additives and Drying Temperatures. Foods 2023; 12:2508. [PMID: 37444246 DOI: 10.3390/foods12132508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Foam mat drying is a widely used technique for liquid products because it has a number of advantages; however, for an efficient process, the choice of additives and temperatures is extremely important. The objective of this study was to evaluate the effect of additives and drying temperatures on the powders obtained from the blend of tropical red fruits, such as acerola, guava, and pitanga. The foam formulations were prepared by mixing the pulps of the three fruits in equal proportions (1:1:1), all added with 6% albumin and 1% stabilizing agent: E1, gum Arabic; E2, guar gum; E3, gelatin. The combinations were subjected to beating, and subsequently, they were dried in an oven with forced air circulation at four temperatures (50 to 80 °C), with a mat thickness of 0.5 cm. The obtained powders showed low levels of water and water activity and high levels of bioactive compounds, colors with a predominance of yellow, intermediate cohesiveness, poor fluidity, and solubility above 50%. The best temperature for obtaining the powders was 60 °C. The formulation that produced the best results for the production of the tropical red fruit blend powder was the combination of albumin and gelatin.
Collapse
Affiliation(s)
- Yaroslávia Ferreira Paiva
- Science and Technology Center, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | | | | | | | - Carolaine Gomes Dos Reis
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | | | | | - Wilton Pereira da Silva
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Josivanda Palmeira Gomes
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | | | | |
Collapse
|
8
|
Tropical Red Fruit Blends: The Effect of Combination of Additives on Foaming, Drying and Thermodynamic Properties. Processes (Basel) 2023. [DOI: 10.3390/pr11030888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Blends combine advantageous characteristics of each species, resulting in products with different flavors and nutritional substances. Moreover, transforming them into powder provides numerous advantages. This work evaluated the properties of three blended foam formulations made from the pulps of tropical red fruits (acerola, guava and pitanga) to determine the foam layer drying kinetics and thermodynamic properties. The foam formulations were prepared by mixing the three pulps in equal proportions (1:1:1), all added with 6% albumin and 1% stabilizing agent. The foams were analyzed for density, volumetric expansion, stability and porosity in six mixing times. Subsequently, they were subjected to drying in an oven with forced air circulation at 4 temperatures, with a layer 0.5 cm thick. Seven mathematical models were fitted to the drying kinetics experimental data to determine the effective diffusivity and thermodynamic properties of the samples. The best mixing times were 5 min for the E2 sample and 30 min for the others. Formulation E2 presented the best results in the foam physical properties, and E3 presented the shortest drying times. All models tested were satisfactorily adjusted, but Page’s model was the most adequate to describe the process. Sample E3 showed the highest diffusivity and sample E2 the lowest activation energy. The drying temperature increase caused reductions in enthalpy and entropy, as well as an increase in Gibbs free energy, indicating an endergonic process. The combination of additives incorporated into the blend influences the drying process: formulation E2 shows greater efficiency in removing water, and formulation E1 presents the highest energy demand.
Collapse
|
9
|
Santos NC, Almeida RLJ, de Andrade EWV, de Fátima Dantas de Medeiros M, da Silva Pedrini MR. Effects of drying conditions and ethanol pretreatment on the techno-functional and morpho-structural properties of avocado powder produced by foam-mat drying. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
10
|
Investigation of physical, antioxidant, antimicrobial, and sensory properties of foam-mat dried ajwain (Trachyspermum ammi) seed essence powder. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Morais RA, Teixeira GL, Ferreira SRS, Cifuentes A, Block JM. Nutritional Composition and Bioactive Compounds of Native Brazilian Fruits of the Arecaceae Family and Its Potential Applications for Health Promotion. Nutrients 2022; 14:nu14194009. [PMID: 36235663 PMCID: PMC9571529 DOI: 10.3390/nu14194009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
The fruits from the Arecaceae family, although being rich in bioactive compounds with potential benefits to health, have been underexplored. Studies on their composition, bioactive compounds, and effects of their consumption on health are also scarce. This review presents the composition of macro- and micronutrients, and bioactive compounds of fruits of the Arecaceae family such as bacaba, patawa, juçara, açaí, buriti, buritirana, and butiá. The potential use and reported effects of its consumption on health are also presented. The knowledge of these underutilized fruits is important to encourage production, commercialization, processing, and consumption. It can also stimulate their full use and improve the economy and social condition of the population where these fruits are found. Furthermore, it may help in future research on the composition, health effects, and new product development. Arecaceae fruits presented in this review are currently used as raw materials for producing beverages, candies, jams, popsicles, ice creams, energy drinks, and edible oils. The reported studies show that they are rich in phenolic compounds, carotenoids, anthocyanins, tocopherols, minerals, vitamins, amino acids, and fatty acids. Moreover, the consumption of these compounds has been associated with anti-inflammatory, antiproliferative, antiobesity, and cardioprotective effects. These fruits have potential to be used in food, pharmaceutical, and cosmetic industries. Despite their potential, some of them, such as buritirana and butiá, have been little explored and limited research has been conducted on their composition, biological effects, and applications. Therefore, more detailed investigations on the composition and mechanism of action based on in vitro and/or in vivo studies are needed for fruits from the Arecaceae family.
Collapse
Affiliation(s)
- Rômulo Alves Morais
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
| | - Gerson Lopes Teixeira
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
| | | | - Alejandro Cifuentes
- Foodomics Laboratory, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), 28049 Madrid, Spain
- Correspondence: (A.C.); (J.M.B.)
| | - Jane Mara Block
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis 88034-001, Brazil
- Correspondence: (A.C.); (J.M.B.)
| |
Collapse
|
12
|
Çalışkan Koç G, Tekgül Y, Yüksel AN, Khanashyam AC, Kothakota A, Pandiselvam R. Recent development in foam‐mat drying process: Influence of foaming agents and foam properties on powder properties. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gülşah Çalışkan Koç
- Food Technology Program, Eşme Vocational High School Uşak University Uşak Turkey
| | - Yeliz Tekgül
- Food Processing Department, Köşk Vocational School Aydın Adnan Menderes University Aydın Turkey
| | - Ayşe Nur Yüksel
- Department of Gastronomy and Culinary Arts, Faculty of Engineering, Architecture and Design Kahramanmaraş Istiklal University Kahramanmaraş Turkey
| | | | - Anjineyulu Kothakota
- Agro‐Processing & Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR‐Central Plantation Crops Research Institute Kasaragod India
| |
Collapse
|
13
|
Muñoz AM, Casimiro-Gonzales S, Gómez-Coca RB, Moreda W, Best I, Cajo-Pinche MI, Loja JF, Ibañez E, Cifuentes A, Ramos-Escudero F. Comparison of Four Oil Extraction Methods for Sinami Fruit ( Oenocarpus mapora H. Karst): Evaluating Quality, Polyphenol Content and Antioxidant Activity. Foods 2022; 11:1518. [PMID: 35627087 PMCID: PMC9141738 DOI: 10.3390/foods11101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/26/2023] Open
Abstract
The sinami palm (Oenocarpus mapora H. Karst) is a plant from the South American Amazonia that has great potential for industrial applications in the development of functional foods, nutraceuticals and cosmeceuticals. In this manuscript, the physicochemical properties, total polyphenol content and antioxidant activity of sinami oil that was obtained using four extraction systems, namely expeller press extraction (EPE), cold press extraction (CPE), ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), were studied and compared. The oxidative stability (OSI) was statistically non-significant in EPE and SFE. The chromatic properties (CIELab) were influenced by the extraction methods and SFE presented high values of L* and a lower content of plant pigments. Ultrasound-assisted extraction showed a higher content of polyphenols and higher antioxidant activity. Different analyses for the evaluation of the physicochemical properties, the content of total polyphenols and antioxidant activity were used to classify sinami oil according to chemometrics using principal component analysis (PCA). For example, the sinami oil that was obtained using each extraction method was in a different part of the plot. In summary, sinami oil is an excellent resource for plant pigments. Additionally, the information that was obtained on the quality parameters in this study provided a good foundation for further studies on the characterization of major and minor compounds.
Collapse
Affiliation(s)
- Ana María Muñoz
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
| | - Sandra Casimiro-Gonzales
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
| | - Raquel B. Gómez-Coca
- Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Building 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (R.B.G.-C.); (W.M.)
| | - Wenceslao Moreda
- Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Building 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (R.B.G.-C.); (W.M.)
| | - Ivan Best
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
| | - María Isabel Cajo-Pinche
- Carrera Profesional de Ingeniería Agroindustrial, Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Jr. Jorge Chávez 1160, Puerto Maldonado 17001, Peru;
| | - Juan Francisco Loja
- Asociación para la Conservación de la Cuenca Amazónica (ACCA), Madre de Dios 17001, Peru;
| | - Elena Ibañez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (E.I.); (A.C.)
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (E.I.); (A.C.)
| | - Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
- Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Av. La Fontana 750, Lima 15024, Peru
| |
Collapse
|
14
|
Santos NC, Almeida RLJ, de Medeiros MDFD, Hoskin RT, da Silva Pedrini MR. Foaming characteristics and impact of ethanol pretreatment in drying behavior and physical characteristics for avocado pulp powder obtained by foam mat drying. J Food Sci 2022; 87:1780-1795. [PMID: 35315074 DOI: 10.1111/1750-3841.16123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/18/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
Abstract
The objective of this study was to optimize the production of powdered avocado using foam mat drying. In order to achieve this, the effect of Emustab® (4, 6, and 8% w/w), goat's milk (10, 15, and 20% w/w), and whipping time (15, 20, and 25 min) on the foam physical properties of avocado pulp were evaluated. In addition, the influence of ethanol pretreatment on the drying kinetics, thermodynamic properties, and physicochemical characteristics of the powders was also assessed. An experimental design 23 with three central points was used in this study and optimized foam conditions were dried at 50, 60, and 70°C, with a fixed air speed of 1.5 m/s. Empirical and diffusive models (boundary conditions of the third type) were adjusted to the experimental data to describe the drying kinetics and to determine the process activation energy and thermodynamic properties. The final products were characterized regarding their physical properties. Optimized foam mat drying conditions were achieved when avocado pulp was whipped for 15 min and 8% of Emustab® and 20% of powdered goat milk were used as foaming agents. The use of an ethanol pretreatment and higher drying temperature (70°C) resulted in higher drying rate (1.6 × 102 /min) and shorter processing time (270 min). The ethanol pretreatment reduced the activation energy and Biot number and led to more uniform moisture distribution. The physical properties, such as water content, water activity, bulk, and tapped densities decreased with an increase in drying temperature and pretreatment with ethanol, whereas water absorption capacity increased. PRACTICAL APPLICATION: In this work, new information about the drying kinetics and mass transfer of the foam mat avocado pulp using ethanol as pretreatment is obtained. The results will contribute to the optimization production avocado foaming and powder. Ethanol pretreatment can represent an alternative to minimize the negative impacts on drying process and can be surely suggested as an industrial application.
Collapse
Affiliation(s)
- Newton Carlos Santos
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | | | | | - Roberta Targino Hoskin
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal-RN, Brazil.,Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | | |
Collapse
|
15
|
Gao R, Xue L, Zhang Y, Liu Y, Shen L, Zheng X. Production of blueberry pulp powder by microwave-assisted foam-mat drying: Effects of formulations of foaming agents on drying characteristics and physicochemical properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|