1
|
Sicard J, Barbe S, Boutrou R, Bouvier L, Delaplace G, Lashermes G, Théron L, Vitrac O, Tonda A. A primer on predictive techniques for food and bioresources transformation processes. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
| | | | | | - Laurent Bouvier
- UMET Université de Lille, CNRS, Centrale Lille, INRAE Villeneuve‐D'Ascq France
| | - Guillaume Delaplace
- UMET Université de Lille, CNRS, Centrale Lille, INRAE Villeneuve‐D'Ascq France
| | | | | | - Olivier Vitrac
- SayFood, INRAE, AgroParisTech Université Paris Saclay Massy France
| | - Alberto Tonda
- MIA‐Paris, AgroParisTech, INRAE Université Paris Saclay Paris France
| |
Collapse
|
2
|
Wilson D, Christie G, Fryer P, Hall I, Landel J, Whitehead K. Lessons to learn from roadmapping in cleaning and decontamination. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Alhuthali S, Delaplace G, Macchietto S, Bouvier L. Whey protein fouling prediction in plate heat exchanger by combining dynamic modelling, dimensional analysis, and symbolic regression. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
|
5
|
A soft tubular model reactor based on the bionics of a small intestine: anti particulate fouling by peristalsis. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Françolle de Almeida C, Saget M, Delaplace G, Jimenez M, Fierro V, Celzard A. Innovative fouling-resistant materials for industrial heat exchangers: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fouling of heat exchangers (HEs) has become a major concern across the industrial sector. Fouling is an omnipresent phenomenon but is particularly prevalent in the dairy, oil, and energy industries. Reduced energy performance that results from fouling represents significant operating loss in terms of both maintenance and impact on product quality and safety. In most industries, cleaning or replacing HEs are currently the only viable solutions for controlling fouling. This review examines the latest advances in the development of innovative materials and coatings for HEs that could mitigate the need for costly and frequent cleaning and potentially extend their operational life. To better understand the correlation between surface properties and fouling occurrence, we begin by providing an overview of the main mechanisms underlying fouling. We then present selected key strategies, which can differ considerably, for developing antifouling surfaces and conclude by discussing the current trends in the search for ideal materials for a range of applications. In our presentation of all these aspects, emphasis is given wherever possible to the potential transfer of these innovative surfaces from the laboratory to the three industries most concerned by HE fouling problems: food, petrochemicals, and energy production.
Collapse
Affiliation(s)
| | - Manon Saget
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France
| | - Guillaume Delaplace
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France
| | - Maude Jimenez
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France
| | - Vanessa Fierro
- Université de Lorraine, CNRS, IJL , F-88000 Epinal , France
| | - Alain Celzard
- Université de Lorraine, CNRS, IJL , F-88000 Epinal , France
| |
Collapse
|
7
|
|