1
|
Cervantes-Jiménez R, Martínez MM, Mercado-Luna A, Chávez-Servín JL, Ruiz BC, Vargas-Madriz ÁF, Roldán-Padrón O, Cabañas MEF, Ferriz-Martínez RA, García-Gasca T. Effect of Induced Mechanical Leaf Damage on the Yield and Content of Bioactive Molecules in Leaves and Seeds of Tepary Beans ( Phaseolus acutifolius). PLANTS (BASEL, SWITZERLAND) 2022; 11:3538. [PMID: 36559649 PMCID: PMC9784140 DOI: 10.3390/plants11243538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Growing interest has recently been shown in Tepary beans (Phaseolus acutifolius) because they contain lectins and protease inhibitors that have been shown to have a specific cytotoxic effect on human cancer cells. Bean lectins offer protection against biotic and abiotic stress factors, so it is possible that mechanical foliar damage may increase lectin production. This study evaluates the effect of mechanical stress (foliar damage) on lectin and protease inhibitor content in Tepary beans. Seed yield was also analyzed, and phenolic content and antioxidant capacity (DPPH and TEAC) were determined in the leaves. An experimental design with random blocks of three treatments (T1: control group, T2: 50% mechanical foliar damage and T3: 80% mechanical foliar damage) was carried out. Mechanical foliar damage increased the amount of lectin binding units (LBUs) fivefold (from 1280 to 6542 LBUs in T3) but did not affect units of enzymatic activity (UEA) against trypsin (from 60.8 to 51 UEA in T3). Results show that controlled mechanical foliar damage could be used to induce overexpression of lectins in the seeds of Tepary beans. Mechanical foliar damage reduced seed production (-14.6%: from 1890 g to 1615 g in T3) and did not significantly increase phenolic compound levels in leaves.
Collapse
Affiliation(s)
- Ricardo Cervantes-Jiménez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Marisol Martínez Martínez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Querétaro, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| | - Adán Mercado-Luna
- Facultad de Ingeniería, Campus Amealco, Universidad Autónoma de Querétaro, Carretera Amealco–Temascalcingo km 1, Col. Amealco 76850, Querétaro, Mexico
| | - Jorge Luis Chávez-Servín
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Bárbara Cabello Ruiz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Ángel Félix Vargas-Madriz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Octavio Roldán-Padrón
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Mónica Eugenia Figueroa Cabañas
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Roberto Augusto Ferriz-Martínez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| |
Collapse
|
2
|
Brola TR, Dreon MS, Fernández PE, Portiansky EL, Heras H. Ingestion of Poisonous Eggs of the Invasive Apple Snail Pomacea canaliculata Adversely Affects Bullfrog Lithobathes catesbeianus Intestine Morphophysiology. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tabata R. Brola
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), CONICET – UNLP, La Plata, Argentina
| | - Marcos S. Dreon
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), CONICET – UNLP, La Plata, Argentina
| | - Patricia E. Fernández
- Instituto de Patología B. Epstein. Cátedra de Patología General, Facultad de Cs. Veterinarias, UNLP, Argentina
| | - Enrique L. Portiansky
- Laboratorio de Análisis de Imágenes (LAI), Cátedra de Patología General, Facultad de Cs. Veterinarias, Universidad Nacional de La Plata (UNLP), Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), CONICET – UNLP, La Plata, Argentina
| |
Collapse
|
3
|
Ituarte S, Brola TR, Fernández PE, Mu H, Qiu JW, Heras H, Dreon MS. A lectin of a non-invasive apple snail as an egg defense against predation alters the rat gut morphophysiology. PLoS One 2018; 13:e0198361. [PMID: 29856808 PMCID: PMC5983499 DOI: 10.1371/journal.pone.0198361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/17/2018] [Indexed: 01/07/2023] Open
Abstract
The eggs of the freshwater Pomacea apple snails develop above the water level, exposed to varied physical and biological stressors. Their high hatching success seems to be linked to their proteins or perivitellins, which surround the developing embryo providing nutrients, sunscreens and varied defenses. The defensive mechanism has been unveiled in P. canaliculata and P. maculata eggs, where their major perivitellins are pigmented, non-digestible and provide a warning coloration while another perivitellin acts as a toxin. In P. scalaris, a species sympatric to the former, the defense strategy seems different, since no toxin was found and the major perivitellin, PsSC, while also colored and non-digestible, is a carbohydrate-binding protein. In this study we examine the structure and function of PsSC by sequencing its subunits, characterizing its carbohydrate binding profile and evaluating its effect on gut cells. Whereas cDNA sequencing and database search showed no lectin domain, glycan array carbohydrate binding profile revealed a strong specificity for glycosphingolipids and ABO group antigens. Moreover, PsSC agglutinated bacteria in a dose-dependent manner. Inspired on the defensive properties of seed lectins we evaluated the effects of PsSC on intestinal cells both in vitro (Caco-2 and IEC-6 cells) and in the gastrointestinal tract of rats. PsSC binds to Caco-2 cell membranes without reducing its viability, while a PsSC-containing diet temporarily induces large epithelium alterations and an increased absorptive surface. Based on these results, we propose that PsSC is involved in embryo defenses by altering the gut morphophysiology of potential predators, a convergent role to plant defensive lectins.
Collapse
Affiliation(s)
- Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
| | - Tabata Romina Brola
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
| | - Patricia Elena Fernández
- Instituto de Patología B. Epstein, Cátedra de Patología General Veterinaria, Facultad Ciencias Veterinarias, UNLP, La Plata, Argentina
| | - Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Marcos Sebastián Dreon
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
4
|
Dreon MS, Fernández PE, Gimeno EJ, Heras H. Insights into embryo defenses of the invasive apple snail Pomacea canaliculata: egg mass ingestion affects rat intestine morphology and growth. PLoS Negl Trop Dis 2014; 8:e2961. [PMID: 24945629 PMCID: PMC4063725 DOI: 10.1371/journal.pntd.0002961] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Methodology/Principal Findings Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Conclusions/Significance Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies. This defense mechanism may explain the near absence of predators of apple snail eggs. Filled with nutritious substances to nourish the embryos, eggs of most animals are often the targets of pathogens and predators. An exception are the eggs of Pomacea canaliculata –known as the apple snail– which have hardly any predators. This freshwater snail is a serious aquatic crop pest in several continents, listed among the 100 worst invasive species. It is the host of a roundworm responsible for the rat lungworm disease causing human eosinophilic meningitis. The spread of this emerging infectious disease has been associated with the expansion of apple snails. They lay eggs above water level in bright pink-reddish masses, presumably a warning coloration. Indeed, eggs have chemical defenses, including neurotoxic and antinutritive proteins. The authors found that the ingestion of egg extracts adversely affects rat small intestine inducing large, reversible changes in the intestinal wall that limits the ability to absorb egg nutrients causing a diminished growth rate. Apple snail eggs are the first animal known to deter predators by this mechanism, but remarkably this defense is rather similar to the toxic effect of plant seeds proteins. These overlapping egg defenses that predators have not managed to overcome yet may partially explain the reproductive success of P. canaliculata.
Collapse
Affiliation(s)
- Marcos S. Dreon
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) – CONICET CCT, La Plata, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Patricia E. Fernández
- Instituto de Patología B. Epstein, Cátedra de Patología General Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eduardo J. Gimeno
- Instituto de Patología B. Epstein, Cátedra de Patología General Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) – CONICET CCT, La Plata, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail:
| |
Collapse
|
5
|
von Son-de Fernex E, Alonso-Díaz MA, Valles-de la Mora B, Capetillo-Leal CM. In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of Haemonchus contortus infective larvae. Exp Parasitol 2012; 131:413-8. [PMID: 22652531 DOI: 10.1016/j.exppara.2012.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/02/2011] [Accepted: 05/21/2012] [Indexed: 11/25/2022]
Abstract
This study investigated the in vitro anthelmintic (AH) activity of five tropical legume plants [Arachis pintoi CIAT 22160 (A.p. 22160), Gliricidia sepium, Cratylia argentea (C.a. Yacapani), C. argentea CIAT 22386 (C.a. 22386), C. argentea Veranera (C.a. Veranera)] against Haemonchus contortus infective larvae and the role of tannins/polyphenolic compounds in the AH effect. Lyophilized leaf extracts of each plant were evaluated using the Larval Exsheathment Inhibition Assay (LEIA) and the larval migration inhibition assay (LMIA). The role of tannins/polyphenolic compounds in the AH effect was evaluated in both assays using polyethylene glycol (PEG) to remove tannins from the solutions. At the highest concentration (1200μg of extract/ml), A. pintoi 22160, C.a. Yacapani, C.a. Veranera and C.a. 22386 completely inhibited the exsheathment process of H. contortus (P<0.01). At the same concentration (1200μg of extract/ml), the inhibition of larval migration for C.a. 22386, C.a. Veranera and G. sepium was 66.0%, 35.9% and 39.2% (relative to the PBS control), respectively. In both bioassays (LEIA and LMIA), the AH effect shown by each plant was blocked after the addition of polyethylene glycol (PEG), corroborating the role of tannins/polyphenolic compounds.
Collapse
Affiliation(s)
- Elke von Son-de Fernex
- Centro de Enseñanza Investigación y Extensión en Ganadería Tropical, Universidad Nacional Autónoma de México, Km 5.5 Carretera Federal Tlapacoyan-Martínez de la Torre, CP 93600, Veracruz, Mexico
| | | | | | | |
Collapse
|
6
|
De Mejia EG, Del Carmen Valadez-Vega M, Reynoso-Camacho R, Loarca-Pina G. Tannins, trypsin inhibitors and lectin cytotoxicity in tepary (Phaseolus acutifolius) and common (Phaseolus vulgaris) beans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2005; 60:137-45. [PMID: 16187017 DOI: 10.1007/s11130-005-6842-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study compared the levels of antinutritional components and cytotoxic effect of extracts, from tepary (Phaseolus acutifolius) and common (Phaseolus vulgaris) beans. Antinutritional factors were evaluated by determining their effect on the viability of epithelial cells isolated from rat small intestine. The protein and carbohydrates content were similar in all the genotypes studied (20 and 60%, respectively). Common beans presented higher content of trypsin inhibitors, tannins and lectins than tepary beans. There was not a significant correlation between tannins and cooking time. However, water absorption and cooking time correlated significantly (p < 0.05). Considerable variation was observed in lectin activity (1302-18161 Ul/mg) of extracts from different beans. Tannins, lectins, trypsin inhibitors and fat content differed between bean varieties whereas protein content was similar. The percent cellularity on rat epithelial cells was significantly different among protein extracts from different bean cultivars and ranged between 53.5% and 87.4% (p < 0.05). These results suggest that the incorporation of tepary beans in the diet would not alter the current nutritional contribution of common beans or introduce adverse toxic effects. The agronomic characteristics of tepary beans make them attractive for cultivation. However, the harder to cook phenomenon may be a limiting factor that needs further consideration.
Collapse
Affiliation(s)
- Elvira Gonzalez De Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 61801, USA.
| | | | | | | |
Collapse
|