1
|
Wiart C, Kathirvalu G, Raju CS, Nissapatorn V, Rahmatullah M, Paul AK, Rajagopal M, Sathiya Seelan JS, Rusdi NA, Lanting S, Sulaiman M. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules 2023; 28:molecules28093873. [PMID: 37175283 PMCID: PMC10180233 DOI: 10.3390/molecules28093873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023] Open
Abstract
This review identifies terpenes isolated from the medicinal Angiosperms of Asia and the Pacific with antibacterial and/or antifungal activities and analyses their distribution, molecular mass, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022. About 300 antibacterial and/or antifungal terpenes were identified during this period. Terpenes with a MIC ≤ 2 µg/mL are mostly amphiphilic and active against Gram-positive bacteria, with a molecular mass ranging from about 150 to 550 g/mol, and a polar surface area around 20 Ų. Carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6'-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are chemical frameworks that could be candidates for the further development of lead antibacterial or antifungal drugs.
Collapse
Affiliation(s)
- Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Geethanjali Kathirvalu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Veeranoot Nissapatorn
- Research Excellence Centre for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Nor Azizun Rusdi
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Wu DX, Wang WL, Du Y, He L, Wu QY. Changes in toxicity and adsorbable organic bromine concentrations in ozonated reclaimed water irradiated with sunlight. WATER RESEARCH 2023; 230:119512. [PMID: 36580801 DOI: 10.1016/j.watres.2022.119512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Disinfecting reclaimed water for safe reuse can produce toxic disinfection by-products such as adsorbable organic bromine (AOBr). Irradiating stored reclaimed water with sunlight is a "green" and free method for eliminating some toxic disinfection by-products, but the effects of irradiation with sunlight on ozonated reclaimed water containing bromide are not well understood. In this study, AOBr was found at concentrations of 171-180 (µg Br)/L in ozonated reclaimed water containing bromide at a concentration of 2 (mg Br)/L and dissolved organic carbon at a concentration of ∼5 (mg C)/L. Irradiation with sunlight degraded 53-74% of the AOBr in two reclaimed water samples in 8 h, and the pseudo-first-order rate constants (k) were 0.09-0.17 h-1. The concentration of tribromomethane, a typical Br-containing disinfection by-product, was decreased by >96% by irradiation for 8 h (k = 0.42-0.47 h-1). Irradiation with sunlight decreased the toxicity of ozonated reclaimed water to Chinese hamster ovary cells. Irradiation with sunlight decreased the degree of intracellular oxidative stress and oxidative damage caused by ozonated reclaimed water. Irradiation with sunlight for 8 h decreased cytotoxicity of the ozonated reclaimed water samples by 79% and 65%. The change in AOBr concentration correlated with the change in toxicity (R2=0.69, p<0.05). The relationships between sunlight wavelength and decreases in the AOBr concentration and toxicity were assessed, and it was found that UV in sunlight was predominantly responsible for decreasing the AOBr concentration and toxicity by reclaimed water. During irradiation for 8 h, UV was responsible for 65%-66% of the decrease in the AOBr concentration and 65-79% of the decrease in reclaimed water induced cytotoxicity. Irradiation with sunlight is a promising method for degrading AOBr and detoxifying ozonated reclaimed water during storage to allow the water to be reused.
Collapse
Affiliation(s)
- De-Xiu Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wen-Long Wang
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Liu He
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Dorotkiewicz-Jach A, Markwitz P, Drulis-Kawa Z. The In Vitro Anti-Pseudomonal Activity of Cu 2+, Strawberry Furanone, Gentamicin, and Lytic Phages Alone and in Combination: Pros and Cons. Int J Mol Sci 2021; 22:ijms22189830. [PMID: 34575991 PMCID: PMC8469652 DOI: 10.3390/ijms22189830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated the anti-pseudomonal activity of cupric ions (Cu2+), strawberry furanone (HDMF), gentamicin (GE), and three lytic Pseudomonas aeruginosa bacteriophages (KT28, KTN4, LUZ19), separately and in combination. HDMF showed an anti-virulent effect but only when applied with Cu2+ or GE. GE, at a sub-minimal inhibitory concentration, slowed down phage progeny production due to protein synthesis inhibition. Cu2+ significantly reduced both the bacterial cell count and the number of infective phage particles, likely due to its genotoxicity or protein inactivation and cell membrane disruption effects. Furthermore, Cu2+‘s probable sequestration by phage particles led to the reduction of free toxic metal ions available in the solution. An additive antibacterial effect was only observed for the combination of GE and Cu2+, potentially due to enhanced ROS production or to outer membrane permeabilization. This study indicates that possible interference between antibacterial agents needs to be carefully investigated for the preparation of effective therapeutic cocktails.
Collapse
|
4
|
Prata R, Petrarca MH, Filho JT, Godoy HT. Simultaneous determination of furfural, 5-hydroxymethylfurfural and 4-hydroxy-2,5-dimethyl-3(2H)-furanone in baby foods available in the Brazilian market. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Flexible Screen Printed Aptasensor for Rapid Detection of Furaneol: A Comparison of CNTs and AgNPs Effect on Aptasensor Performance. NANOMATERIALS 2020; 10:nano10061167. [PMID: 32549348 PMCID: PMC7353281 DOI: 10.3390/nano10061167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Furaneol is a widely used flavoring agent, which can be naturally found in different products, such as strawberries or thermally processed foods. This is why it is extremely important to detect furaneol in the food industry using ultra-sensitive, stable, and selective sensors. In this context, electrochemical biosensors are particularly attractive as they provide a cheap and reliable alternative measurement device. Carbon nanotubes (CNTs) and silver nanoparticles (AgNPs) have been extensively investigated as suitable materials to effectively increase the sensitivity of the biosensors. However, a comparison of the performance of biosensors employing CNTs and AgNPs is still missing. Herein, the effect of CNTs and AgNPs on the biosensor performance has been thoughtfully analyzed. Therefore, disposable flexible and screen printed electrochemical aptasensor modified with CNTs (CNT-ME), or AgNPs (AgNP-ME) have been developed. Under optimized conditions, CNT-MEs showed better performance compared to AgNP-ME, yielding a linear range of detection over a dynamic concentration range of 1 fM-35 μM and 2 pM-200 nM, respectively, as well as high selectivity towards furaneol. Finally, our aptasensor was tested in a real sample (strawberry) and validated with high-performance liquid chromatography (HPLC), showing that it could find an application in the food industry.
Collapse
|
6
|
Younes M, Aquilina G, Castle L, Engel KH, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert-Remy U, Gürtler R, Husøy T, Moldeus P, Oskarsson A, Shah R, Waalkens-Berendsen I, Wölfle D, Benigni R, Bolognesi C, Chipman K, Cordelli E, Degen G, Marzin D, Svendsen C, Carfì M, Vianello G, Mennes W. Scientific Opinion on Flavouring Group Evaluation 217 Revision 2 (FGE.217Rev2), consideration of genotoxic potential for α,β-unsaturated ketones and precursors from chemical subgroup 4.1 of FGE.19: lactones. EFSA J 2019; 17:e05568. [PMID: 32626108 PMCID: PMC7009128 DOI: 10.2903/j.efsa.2019.5568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Food Additives and Flavourings of the European Food Safety Authority was requested to evaluate the genotoxic potential of 12 flavouring substances from subgroup 4.1 of FGE.19 in the Flavouring Group Evaluation 217 (FGE.217). Based on experimental data, in previous versions of this FGE (FGE.217 and FGE217Rev1), for 6-methylcoumarin [FL-no: 13.012] and 5-ethyl-3-hydroxy-4-methylfuran-2(5H)-one [FL-no: 10.023] the concern for genotoxicity was ruled out. 6-Methylcoumarin was evaluated using the Procedure in FGE.80Rev1. For 5-ethyl-3-hydroxy-4-methylfuran-2(5H)-one [FL-no: 10.023] and the structurally related substance 3-hydroxy-4,5-dimethylfuran-2(5H)-one [FL-no: 10.030], no further EFSA considerations were needed because these substances were evaluated by JECFA before 2000. Also based on experimental data, in FGE217Rev1, the concern for genotoxicity could not be ruled out for furan-2(5H)-one [FL-no: 10.066] and 3,4-dimethyl-5-pentylidenefuran-2(5H)-one [FL-no: 10.042], which later substance represents the following flavourings: [FL-no: 10.034, 10.036, 10.043, 10.046, 10.054, 10.057, 10.060 and 10.170]. In the current revision of this FGE (FGE217Rev2), based on the results of additional genotoxicity studies, the FAF Panel concluded that [FL-no: 10.066] is genotoxic in vivo. Therefore, furan-2(5H)-one [FL-no: 10.066] cannot be evaluated according to the Procedure. For [FL-no: 10.042] in order to rule out a concern for clastogenicity at site of first contact, the FAF Panel requests results from an in vivo comet assay in duodenum. In addition, [FL-no: 10.042] has also been identified as an aneugenic substance in vitro. Until the concern for clastogenicity at site of first contact for [FL-no: 10.042] and the concern for aneugenicity can be ruled out, this substance and [FL-no: 10.034, 10.036, 10.043, 10.046, 10.054, 10.057, 10.060 and 10.170] cannot be evaluated through the Procedure.
Collapse
|
7
|
Use of 2,5-dimethyl-4-hydroxy-3(2H)-furanone in preventing oxidation during fat frying of potato chips and baking of croissants. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Kobets T, Duan JD, Brunnemann KD, Iatropoulos MJ, Etter S, Hickey C, Smith B, Williams GM. In ovo testing of flavor and fragrance materials in Turkey Egg Genotoxicity Assay (TEGA), comparison of results to in vitro and in vivo data. Food Chem Toxicol 2018; 115:228-243. [DOI: 10.1016/j.fct.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
9
|
Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C3N4/Bi2MoO6 under the visible-light. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Mechanisms on the Sterilization Performance of Fluorocarbon Resin Composite Coatings Enhanced by g-C3N4/TiO2. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0478-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Weerawatanakorn M, Wu JC, Pan MH, Ho CT. Reactivity and stability of selected flavor compounds. J Food Drug Anal 2015; 23:176-190. [PMID: 28911372 PMCID: PMC9351765 DOI: 10.1016/j.jfda.2015.02.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/10/2015] [Indexed: 11/30/2022] Open
Abstract
Flavor is the most important aspect of food. Based on the complex matrix of the food system and the flavor structure themselves, one important factor that plays a key role in the quality attribute of food is flavor stability. Not surprisingly, there is a large volume of published research investigating the stability of different food flavor compounds, since understanding flavor stability is crucial to creating greater awareness of dietary flavor application. This review presents a variety of factors that are thought to be involved in the stability of several selected important flavor compounds and the approach to improve the stability of different flavors. Some mechanisms of chemical degradation of flavor compounds were also provided.
Collapse
Affiliation(s)
- Monthana Weerawatanakorn
- Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
12
|
Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase. Biometals 2014; 27:551-8. [PMID: 24671306 DOI: 10.1007/s10534-014-9731-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.
Collapse
|
13
|
Scientific Opinion on Flavouring Group Evaluation 217, Revision 1 (FGE.217Rev1). Consideration of genotoxic potential for α,β‐unsaturated ketones and precursors from chemical subgroup 4.1 of FGE.19: Lactones. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Schwab W. Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®). Molecules 2013; 18:6936-51. [PMID: 23765232 PMCID: PMC6269858 DOI: 10.3390/molecules18066936] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/16/2022] Open
Abstract
4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF, furaneol®) and its methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H)-furanones are synthesized by a series of enzymatic steps whereas HDMF is also a product of the Maillard reaction. Numerous methods for the synthetic preparation of these compounds have been published and are applied by industry, but for the development of a biotechnological process the knowledge and availability of biosynthetic enzymes are required. During the last years substantial progress has been made in the elucidation of the biological pathway leading to HDMF and DMMF. This review summarizes the latest advances in this field.
Collapse
Affiliation(s)
- Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str 1, 85354 Freising, Germany.
| |
Collapse
|
15
|
Mechanism of oxidative damage to DNA by Fe-loaded MCM-41 irradiated with visible light. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5042-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Stadler NC, Somoza V, Schwab W. Absorption of 3(2H)-furanones by human intestinal epithelial Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3949-3954. [PMID: 19338346 DOI: 10.1021/jf9001704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A number of 3(2H)-furanones are synthesized by fruits and have been found in cooked foodstuffs, where they impart flavor and odor because of their low perception thresholds. They show genotoxic properties in model studies but are also ranked among the antioxidants and anticarcinogens. This study examined the efficiency of intestinal absorption and metabolic conversion of 3(2H)-furanones by using Caco-2 cell monolayers as an intestinal epithelial cell model. The permeability of each agent was measured in both the apical to basal and basal to apical directions. 2,5-Dimethyl-4-methoxy-3(2H)-furanone (DMMF) showed the highest absorption rate in all experiments, while similar amounts of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), and 4-hydroxy-5-methyl-3(2H)-furanone (HMF) were taken up. HDMF-glucoside was almost not absorbed but was hydrolyzed to a small extent. The transport of 3(2H)-furanones could not be saturated even at levels of 500 microM and occurred in both directions. Because the uptake was only slightly reduced by apical hyperosmolarity, passive diffusion by paracellular transport is proposed.
Collapse
Affiliation(s)
- Nicole Christina Stadler
- Biomolecular Food Technology, Technical University Munchen, Hochfeldweg 1, 85354 Freising, Germany
| | | | | |
Collapse
|