1
|
Varma RR, Pursuwani BH, Suresh E, Bhatt BS, Patel MN. Single crystal, DNA interaction and cytotoxicity studies of rhenium(I) organometallic compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Kanthecha DA, Bhatt BS, Patel MN. Synthesis, characterization and biological activities of imidazo[1,2-a]pyridine based gold(III) metal complexes. Heliyon 2019; 5:e01968. [PMID: 31294115 PMCID: PMC6595245 DOI: 10.1016/j.heliyon.2019.e01968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/07/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Five imidazo [1,2-a]pyridine derivatives and their Au(III) complexes were synthesized. The compounds were characterized by 1H-NMR, 13C-NMR, IR, mass, UV-visible, elemental analysis, conductivity and magnetic measurement studies. All the compounds were screened for diverse biological activities to check the effect of coordination of Au(III) with imidazo [1,2-a]pyridine heterocycles. The DNA interaction ability of compounds were studied as the change in absorption maxima and position of HS-DNA in presence of compounds and viscosity measurement due to change in DNA length under the influence of compounds. The computational insight of compound-DNA interaction was taken in docking study. All the results suggest intercalation mode of binding. The cellular level cytotoxic nature of compounds was evaluated using trypan blue dye staining of dead cell in cell viability assay. The smearing of DNA was observed, while DNA extracted from S. pombe cells in presence of complexes was subjected to gel electrophoresis, which shows their toxic effect on DNA. The complexes were evaluated for cytotoxicity on human A549 (Lung adenocarcinoma) cell line by MTT assay (IC50 values). The in vitro cytotoxicity in terms of LC50 value was checked on a simple zoological organism, brine shrimp.
Collapse
Affiliation(s)
- Darshana A Kanthecha
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Bhupesh S Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| |
Collapse
|
3
|
Zhang M, Cao G, Guo X, Gao Y, Li W, Lu D. A Comet Assay for DNA Damage and Repair After Exposure to Carbon-Ion Beams or X-rays in Saccharomyces Cerevisiae. Dose Response 2018; 16:1559325818792467. [PMID: 30116170 PMCID: PMC6088507 DOI: 10.1177/1559325818792467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiation (IR) can result in serious genomic instability and genotoxicity by causing DNA damage. Carbon ion (CI) beams and X-rays are typical IRs and possess high-linear energy transfer (LET) and low-LET, respectively. In this article, a comet assay that was optimized by decreasing the electrophoresis time (8 minutes) and voltage (0.5 V/cm) was performed to elucidate and quantify the DNA damage induced by CI or X-rays radiation. Two quantitative methods for the comet assay, namely, comet score and olive tail moment, were compared, and the appropriate means and parameter values were selected for the present assay. The dose-effect relationship for CI or X-rays radiation and the DNA repair process were studied in yeast cells. These results showed that the quadratic function fitted the dose-effect relationship after CI or X-rays exposure, and the trend for the models fitted the dose-effect curves for various repair times was precisely described by the cubic function. A kinetics model was also creatively used to describe the process of DNA repair, and equations were calculated within repairable ranges that could be used to roughly evaluate the process and time necessary for DNA repair.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Guozhen Cao
- Department of Pharmacology, School of Preclinical Medicine of Xinjiang Medical University, Urumqi, China
| | - Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| |
Collapse
|
4
|
Shah B, Jain K, Jiyani H, Mohan V, Madamwar D. Microaerophilic Symmetric Reductive Cleavage of Reactive Azo Dye—Remazole Brilliant Violet 5R by Consortium VIE6: Community Synergism. Appl Biochem Biotechnol 2016; 180:1029-1042. [DOI: 10.1007/s12010-016-2150-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
5
|
Sarkar A, Bhagat J, Ingole BS, Rao DP, Markad VL. Genotoxicity of cadmium chloride in the marine gastropod Nerita chamaeleon using comet assay and alkaline unwinding assay. ENVIRONMENTAL TOXICOLOGY 2015; 30:177-187. [PMID: 23804459 DOI: 10.1002/tox.21883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/16/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
This paper presents an evaluation of the genotoxic effects of cadmium chloride (CdCl2 ) on marine gastropod, Nerita chamaeleon following the technique of comet assay and the DNA alkaline unwinding assay (DAUA). In this study, the extent of DNA damage in gill cells of N. chamaeleon was measured after in vivo exposure to four different concentrations (10, 25, 50, and 75 µg/L) of CdCl2 . In vitro exposure of hydrogen peroxide (H2 O2 ; 1, 10, 25, and 50 µM) of the gill cells showed a significant increase in the percentage tail DNA, Olive tail moment, and tail length (TL). Significant changes in percentage tail DNA by CdCl2 exposure were observed in all exposed groups of snails with respect to those in control. Exposure to 75 µg/L of CdCl2 produced significant decrease in DNA integrity as measured by DAUA at all duration with respect to control. In vivo exposure to different concentrations of CdCl2 (10, 25, 50, and 75 µg/L) to N. chamaeleon showed considerable increase in DNA damage as observed by both alkaline comet assay and the DAUA. The extent of DNA damage in marine gastropods determined by the application of alkaline comet assay and DAUA clearly indicated the genotoxic responses of marine gastropod, N. chamaeleon to a wide range of cadmium concentration in the marine environment.
Collapse
Affiliation(s)
- Anupam Sarkar
- Chemical Oceanographic Division, CSIR-National Institute of Oceanography Dona Paula, Goa, 403004, India.
| | | | | | | | | |
Collapse
|
6
|
Sarkar A, Bhagat J, Sarker S. Evaluation of impairment of DNA in marine gastropod, Morula granulata as a biomarker of marine pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:253-261. [PMID: 24865330 DOI: 10.1016/j.ecoenv.2014.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/12/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
The impairment of DNA in marine gastropod Morula granulata was evaluated in terms of the loss of DNA integrity in the species as a measure of the impact of genotoxic contaminants prevalent in the marine environment along the coast of Goa, India. The extent of DNA damage occurred in the marine gastropods collected from different sampling sites such as Arambol, Anjuna, Sinquerim, Dona Paula, Bogmalo, Hollant, Velsao, Betul and Palolem along the coast of Goa was measured following the technique of partial alkaline unwinding as well as comet assays. The highest DNA integrity was observed at Arambol (F, 0.75), identified as the reference site, whereas the lowest DNA integrity at Hollant (F, 0.33) situated between the two most contaminated sites at Bogmalo and Velsao. The impact of genotoxic contaminants on marine gastropods was pronounced by their low DNA integrity at Sinquerim (F, 0.40) followed by Betul (F, 0.47), Velsao (F, 0.51), Anjuna (F, 0.54), Bogmalo (F, 0.55), Dona Paula (F, 0.67) and Palolem (F, 0.70). The extent of DNA damage occurred in M. granulata due to ecotoxicological impact of the prevailing marine pollutants along the coast of Goa was further substantiated by comet assay and expressed in terms of %head-DNA, %tail DNA, tail length and Olive tail moment. The single cell gel electrophoresis of M. granulata clearly showed relatively higher olive tail moment in the marine gastropod from the contaminated sites, Anjuna, Hollant, Velsao and Betul. The variation in the mean %head DNA at different sampling sites clearly indicated that the extent of DNA damage in marine gastropod increases with the increase in the levels of contamination at different sampling sites along the coast. The stepwise multiple regression analysis of the water quality parameters showed significant correlation between the variation in DNA integrity and PAH in combination with NO3, salinity and PO4 (R¯(2), 0.90). The measurement of DNA integrity in M. granulata thus provides an early warning signal of contamination of the coastal ecosystem of Goa by genotoxic contaminants.
Collapse
Affiliation(s)
- A Sarkar
- Chemical Oceanography Oceanography Division, CSIR - National Institute of Oceanography Dona Paula, Goa 403004, India; Global Enviro-Care, Kevnem, Caranzalem, Goa 403002, India.
| | - Jacky Bhagat
- Chemical Oceanography Oceanography Division, CSIR - National Institute of Oceanography Dona Paula, Goa 403004, India
| | - Subhodeep Sarker
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinarplatz 1, 1210 Vienna, Austria
| |
Collapse
|
7
|
Ferraz ERA, Oliveira GAR, Grando MD, Lizier TM, Zanoni MVB, Oliveira DP. Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 124:108-14. [PMID: 23624428 DOI: 10.1016/j.jenvman.2013.03.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 02/27/2013] [Accepted: 03/16/2013] [Indexed: 05/15/2023]
Abstract
This work describes the efficiency of photoelectrocatalysis based on Ti/TiO2 nanotubes in the degradation of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 and to remove their toxic properties, as an alternative method for the treatment of effluents and water. For this purpose, the discoloration rate, total organic carbon (TOC) removal, and genotoxic, cytotoxic and mutagenic responses were determined, using the comet, micronucleus and cytotoxicity assays in HepG2 cells and the Salmonella mutagenicity assay. In a previous study it was found that the surfactant Emulsogen could contribute to the low mineralization of the dyes (60% after 4 h of treatment), which, in turn, seems to account for the mutagenicity of the products generated. Thus this surfactant was not added to the chloride medium in order to avoid this interference. The photoelectrocatalytic method presented rapid discoloration and the TOC reduction was ≥87% after 240 min of treatment, showing that photoelectrocatalysis is able to mineralize the dyes tested. The method was also efficient in removing the mutagenic activity and cytotoxic effects of these three dyes. Thus it was concluded that photoelectrocatalysis was a promising method for the treatment of aqueous samples.
Collapse
Affiliation(s)
- E R A Ferraz
- USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
B. Patel P, Thakkar V. Cell Proliferation and DNA Damage Study by SCGE in Fission Yeast Exposed to Curcumin and 5-fluorouracil. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajcb.2013.22.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Staneva D, Peycheva E, Georgieva M, Efremov T, Miloshev G. Application of comet assay for the assessment of DNA damage caused by chemical genotoxins in the dairy yeast Kluyveromyces lactis. Antonie van Leeuwenhoek 2012; 103:143-52. [PMID: 22914887 DOI: 10.1007/s10482-012-9793-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
Abstract
Kluyveromyces lactis, also known as dairy yeast, has numerous applications in scientific research and practice. It has been approved as a GRAS (Generally Recognized As Safe) organism, a probiotic, a biotechnological producer of important enzymes at industrial scale and a bioremediator of waste water from the dairy industry. Despite these important practical applications the sensitivity of this organism to genotoxic substances has not yet been assessed. In order to evaluate the response of K. lactis cells to genotoxic agents we have applied several compounds with well-known cyto- and genotoxic activity. The method of comet assay (CA) widely used for the assessment of DNA damages is presented here with new special modifications appropriate for K. lactis cells. The comparison of the response of K. lactis to genotoxins with that of Saccharomyces cerevisiae showed that both yeasts, although considered close relatives, exhibit species-specific sensitivity toward the genotoxins examined.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Acad. G. Bonchev str., 1113, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
10
|
Gómez P, Pagnon M, Egea-Cortines M, Artés F, Weiss J. A fast molecular nondestructive protocol for evaluating aerobic bacterial load on fresh-cut lettuce. FOOD SCI TECHNOL INT 2010; 16:409-15. [PMID: 21339159 DOI: 10.1177/1082013210366882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Elaboration of minimally processed or fresh-cut vegetables requires a quick and reliable method for detection of bacterial contamination over the recommended limits. PCR-based methods fulfil these requirements, but amplification from DNA preparations of the food product is often hampered due to inhibiting substances. The purpose of this study was to develop a fast quantitative PCR (qPCR)-based method for aerobic bacterial enumeration in fresh-cut lettuce, using as reference the centrifugation water (CW) that comes up during processing instead of the food matrix itself. Comparisons between bacterial numbers on lettuce leaves before processing and bacterial numbers in the CW both for naturally occurring bacterial populations and for artificially inoculated lettuce were performed. On an average, 35% of the natural bacterial population and 64% of inoculated bacteria were recovered in the CW. Bacterial number in CW was proportional to initial lettuce contamination suggesting that measures on CW allow a narrow estimation of lettuce contamination. In qPCR, a 23S rDNA region was amplified from bacterial DNA present in the CW, followed by melting peak analyses and quantification. Enumeration of cell number by qPCR did not differ significantly from plate assay and might therefore replace it. The proposed protocol, which includes sample taking, DNA extraction and qPCR from the CW can be performed within less than 5 h. The resulting quantification might be used as a proxy of initial lettuce contamination, allowing direct intervention measures before fresh-cut commodity is shipped from the factory.
Collapse
Affiliation(s)
- P Gómez
- Institute of Plant Biotechnology, Technical University of Cartagena, 30202 Cartagena, Murcia, Spain
| | | | | | | | | |
Collapse
|
11
|
Dhawan A, Bajpayee M, Parmar D. The Comet Assay: A Versatile Tool for Assessing DNA Damage. THE COMET ASSAY IN TOXICOLOGY 2009. [DOI: 10.1039/9781847559746-00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Mahima Bajpayee
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| | - Devendra Parmar
- Developmental Toxicology Division Indian Institute of Toxicology Research (Formerly Industrial Toxicology Research Centre) P.O. Box 80 M.G. Marg Lucknow 226 001 India
| |
Collapse
|
12
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 2008; 25:5-32. [PMID: 18427939 DOI: 10.1007/s10565-008-9072-z] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/17/2008] [Indexed: 11/29/2022]
Abstract
New chemicals are being added each year to the existing burden of toxic substances in the environment. This has led to increased pollution of ecosystems as well as deterioration of the air, water, and soil quality. Excessive agricultural and industrial activities adversely affect biodiversity, threatening the survival of species in a particular habitat as well as posing disease risks to humans. Some of the chemicals, e.g., pesticides and heavy metals, may be genotoxic to the sentinel species and/or to non-target species, causing deleterious effects in somatic or germ cells. Test systems which help in hazard prediction and risk assessment are important to assess the genotoxic potential of chemicals before their release into the environment or commercial use as well as DNA damage in flora and fauna affected by contaminated/polluted habitats. The Comet assay has been widely accepted as a simple, sensitive, and rapid tool for assessing DNA damage and repair in individual eukaryotic as well as some prokaryotic cells, and has increasingly found application in diverse fields ranging from genetic toxicology to human epidemiology. This review is an attempt to comprehensively encase the use of Comet assay in different models from bacteria to man, employing diverse cell types to assess the DNA-damaging potential of chemicals and/or environmental conditions. Sentinel species are the first to be affected by adverse changes in their environment. Determination of DNA damage using the Comet assay in these indicator organisms would thus provide information about the genotoxic potential of their habitat at an early stage. This would allow for intervention strategies to be implemented for prevention or reduction of deleterious health effects in the sentinel species as well as in humans.
Collapse
Affiliation(s)
- Alok Dhawan
- Developmental Toxicology Division, Indian Institute of Toxicology Research (formerly Industrial Toxicology Research Centre), PO Box 80, M.G. Marg, Lucknow, 226 001, India.
| | | | | |
Collapse
|