1
|
Grigio V, Guerra LHA, Silva SB, Freitas MB, Taboga SR, Vilamaior PSL. Coconut oil affects aging-related changes in Mongolian gerbil liver morphophysiology. J Nutr Biochem 2024:109749. [PMID: 39233189 DOI: 10.1016/j.jnutbio.2024.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aging causes changes in liver morphophysiology, altering hepatocyte morphology and organ function. Due to its antioxidant and anti-inflammatory properties, coconut oil has been used as a therapeutic agent in diets, in an attempt to attenuate alterations in the liver naturally caused by aging. Herein, we evaluated the effects of coconut oil consumption during aging on Mongolian gerbil liver morphophysiology. The animals were divided into three experimental groups: the gerbils in the Adult Control Group (AC) were euthanized at 3 months of age, the gerbils in the Old Control Group (OC) at 15 months of age, and the gerbils in the Coconut Oil Group (CO) received 0.1 ml/day of coconut oil for 12 months and were euthanized at 15 months of age. Prolonged consumption of coconut oil during aging prevented the animals and the liver from gaining mass. However, the other results showed that coconut oil intensified the morphophysiological alterations of aging, promoting an increase in the hepatocyte cytoplasm and nuclei. In addition, an increase in blood vessels, reticular fibers, lipid droplets, and lipofuscin granules were observed in the CO group. Finally, the results also demonstrated that coconut oil promotes an increase in lipid peroxidation, indicated by an increase in MDA levels. We therefore conclude that coconut oil has the potential to intensify the morphophysiological alterations that occur in the liver during aging.
Collapse
Affiliation(s)
- Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, São Paulo, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, São Paulo, Brazil
| | - Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, São Paulo, Brazil; Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Pereira de Melo IL, de Oliveira e Silva AM, Yoshime LT, Gasparotto Sattler JA, Teixeira de Carvalho EB, Mancini-Filho J. Punicic acid was metabolised and incorporated in the form of conjugated linoleic acid in different rat tissues. Int J Food Sci Nutr 2018; 70:421-431. [DOI: 10.1080/09637486.2018.1519528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Illana Louise Pereira de Melo
- Department of Food and Experimental Nutrition Laboratory of Lipids Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Luciana Tedesco Yoshime
- Department of Food and Experimental Nutrition Laboratory of Lipids Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Augusto Gasparotto Sattler
- Department of Food and Experimental Nutrition Laboratory of Lipids Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Jorge Mancini-Filho
- Department of Food and Experimental Nutrition Laboratory of Lipids Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Interesterified soybean oil promotes weight gain, impaired glucose tolerance and increased liver cellular stress markers. J Nutr Biochem 2018; 59:153-159. [PMID: 30005920 DOI: 10.1016/j.jnutbio.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/06/2017] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
Abstract
Interesterified fats have largely replaced hydrogenated vegetable fat, which is rich in trans fatty acids, in the food industry as an economically viable alternative, generating interest to study their health effects. The aim of this study was to evaluate the effect that interesterification of oils and fat has on lipid-induced metabolic dysfunction, hepatic inflammation and ER stress. Five week-old male Wistar rats were randomly divided into three experimental groups, submitted to either normocaloric and normolipidic diet containing 10% of lipids from unmodified soybean oil (SO) or from interesterified soybean oil (ISO), and one more group submitted to a high fat diet (HFD) containing 60% of fat from lard as a positive control, for 8 or 16 weeks. Metabolic parameters and hepatic gene expression were evaluated. The HFD consumption led to increased body mass, adiposity and impaired glucose tolerance compared to SO and ISO at both time points of diet. However, the ISO group showed an increased body mass gain, retroperitoneal WAT mass, fasting glucose, and impaired glucose tolerance during ipGTT at 16 weeks compared to SO. Moreover, at 8 weeks, hepatic gene expression of Atf3 and Tnf were increased in the ISO group compared to the SO group. Thus, replacement of natural fat with interesterified fat on a normocaloric and normolipidic diet negatively modulated metabolic parameters and resulted in impaired glucose tolerance in rats.
Collapse
|
4
|
de Melo ILP, de Oliveira e Silva AM, de Carvalho EBT, Yoshime LT, Sattler JAG, Mancini-Filho J. Incorporation and effects of punicic acid on muscle and adipose tissues of rats. Lipids Health Dis 2016; 15:40. [PMID: 26922800 PMCID: PMC4769819 DOI: 10.1186/s12944-016-0214-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/24/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND This study evaluated the effect of pomegranate seed oil (PSO) supplementation, rich in punicic acid (55 %/C18:3-9c,11 t,13c/CLNA), on the lipid profile and on the biochemical and oxidative parameters in the gastrocnemius muscle and adipose tissues of healthy rats. Linseed oil (LO), rich in linolenic acid (52 %/C18:3-9c12c15c/LNA) was used for comparison. METHODS Male Wistar rats (n = 56) were distributed in seven groups: control (water); LNA 1 %, 2 % and 4 % (treated with LO); CLNA 1 %, 2 % and 4 % (treated with PSO), po for 40 days. The percentages were compared to the daily feed intake. Fatty acid profile were performed by gas chromatography, antioxidant enzymes activity by spectrophotometer and the adipocytes were isolated by collagenase tissue digestion. Analysis of variance (ANOVA) was applied to check for differences between the groups (control, LNAs and CLNAs) and principal component analysis (PCA) was used to project the groups in the factor-place (PC1 vs PC2) based on the biochemical responses assessed in the study. RESULTS The fatty acids profile of tissues showed that the LNA percentages were higher in the animals that were fed LO. However, PA was only detected in the adipose tissues. Conjugated linoleic acid (CLA) was present in all the tissues of the animals supplemented with PSO, in a dose dependent manner, and 9c11t-CLA was the predominant isomer. Nevertheless there were no changes in the total weight gain of the animals, the weights of the tissues, and the oxidative stress parameters in the muscle. In addition, there was an increase in the size of the epididymal fat cells in the groups treated with PSO. Principal component analysis (PCA) showed that the CLNAs groups were arranged separately with a cumulative variance of 68.47 %. CONCLUSIONS The results show that PSO can be used as a source of CLAs but that it does not cause changes in body modulation and does not interfere in the antioxidant activity of healthy rats.
Collapse
Affiliation(s)
- Illana Louise Pereira de Melo
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, São Paulo, University of São Paulo, Av. Prof. Lineu Prestes, 580 - Bloco 14, CEP: 05508-900, São Paulo, Brazil.
| | | | - Eliane Bonifácio Teixeira de Carvalho
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, São Paulo, University of São Paulo, Av. Prof. Lineu Prestes, 580 - Bloco 14, CEP: 05508-900, São Paulo, Brazil
| | - Luciana Tedesco Yoshime
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, São Paulo, University of São Paulo, Av. Prof. Lineu Prestes, 580 - Bloco 14, CEP: 05508-900, São Paulo, Brazil
| | - José Augusto Gasparotto Sattler
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, São Paulo, University of São Paulo, Av. Prof. Lineu Prestes, 580 - Bloco 14, CEP: 05508-900, São Paulo, Brazil
| | - Jorge Mancini-Filho
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, São Paulo, University of São Paulo, Av. Prof. Lineu Prestes, 580 - Bloco 14, CEP: 05508-900, São Paulo, Brazil
| |
Collapse
|
5
|
Rai AK, Bhaskar N, Baskaran V. Effect of feeding lipids recovered from fish processing waste by lactic acid fermentation and enzymatic hydrolysis on antioxidant and membrane bound enzymes in rats. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:3701-10. [PMID: 26028754 PMCID: PMC4444881 DOI: 10.1007/s13197-014-1442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022]
Abstract
Fish oil recovered from fresh water fish visceral waste (FVW-FO) through lactic acid fermentation (FO-LAF) and enzymatic hydrolysis (FO-EH) were fed to rats to study their influence on lipid peroxidation and activities of antioxidant and membrane bound enzyme in liver, heart and brain. Feeding of FO-LAF and FO-EH resulted in increase (P < 0.05) in lipid peroxides level in serum, liver, brain and heart tissues compared to ground nut oil (control). Activity of catalase (40-235 %) and superoxide dismutase (17-143 %) also increased (P < 0.05) with incremental level of EPA + DHA in diet. The increase was similar to cod liver oil fed rats at same concentration of EPA + DHA. FO-LAF and FO-EH increased (P < 0.05) the Na(+)K(+) ATPase activity in liver and brain microsomes, Ca(+)Mg(+) ATPase in heart microsome and acetylcholine esterase in brain microsomes when fed with 5 % EPA + DHA. There was also significant change in fatty acid composition and cholesterol/phospholipid ratio in microsomes of rat fed with FVW-FO. Feeding FVW-FO recovered by biotechnological approaches enhanced the activity of antioxidant enzymes in tissues, modulates the activities of membrane bound enzymes and improved the fatty acid composition in microsomes of tissues similar to CLO. Utilization of these processing wastes for the production of valuable biofunctional products can reduce the mounting economic values of fish oil and minimize the environmental pollution problems.
Collapse
Affiliation(s)
- Amit Kumar Rai
- />Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysore, 570 020 Karnataka India
- />Microbial Resources Division, Regional Center of Institute of Bioresources and Sustainable Development (RCIBSD), DBT, Gangtok, Sikkim India
| | - N. Bhaskar
- />Department of Meat & Marine Sciences, CSIR - Central Food Technological Research Institute, Mysore, 570 020 India
| | - V. Baskaran
- />Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysore, 570 020 Karnataka India
| |
Collapse
|
6
|
Bispo KP, de Oliveira Rodrigues L, da Silva Soares de Souza É, Mucci D, Tavares do Carmo MDG, de Albuquerque KT, de Carvalho Sardinha FL. Trans and interesterified fat and palm oil during the pregnancy and lactation period inhibit the central anorexigenic action of insulin in adult male rat offspring. J Physiol Sci 2015; 65:131-8. [PMID: 25398547 PMCID: PMC10717077 DOI: 10.1007/s12576-014-0351-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022]
Abstract
Palm oil and interesterified fat have been used to replace partially hydrogenated fats, rich in trans isomers, in processed foods. This study investigated whether the maternal consumption of normolipidic diets containing these lipids affects the insulin receptor and Akt/protein kinase B (PKB) contents in the hypothalamus and the hypophagic effect of centrally administered insulin in 3-month-old male offspring. At 90 days, the intracerebroventricular injection of insulin decreased 24-h feeding in control rats but not in the palm, interesterified or trans groups. The palm group exhibited increases in the insulin receptor content of 64 and 69 % compared to the control and trans groups, respectively. However, the quantifications of PKB did not differ significantly across groups. We conclude that the intake of trans fatty acid substitutes during the early perinatal period affects food intake regulation in response to centrally administered insulin in the young adult offspring; however, the underlying mechanisms remain unclear.
Collapse
Affiliation(s)
- Kenia Pereira Bispo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Letícia de Oliveira Rodrigues
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Érica da Silva Soares de Souza
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Daniela Mucci
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Maria das Graças Tavares do Carmo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| | - Kelse Tibau de Albuquerque
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
- Laboratório de Nutrição Experimental, LABNEX, Universidade Federal do Rio de Janeiro, Macaé, RJ Brazil
| | - Fatima Lucia de Carvalho Sardinha
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro da, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Av. Carlos Chagas, 373, Edificio do Centro de Ciências da Saúde, Bloco J, 2º andar, sala 021, Rio de Janeiro, RJ 219415-902 Brazil
| |
Collapse
|
7
|
Total antioxidant activity of selected vegetable oils and their influence on total antioxidant values in vivo: A photochemiluminescence based analysis. Food Chem 2014; 164:551-5. [DOI: 10.1016/j.foodchem.2014.05.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 04/11/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022]
|
8
|
Tou JC, Altman SN, Gigliotti JC, Benedito VA, Cordonier EL. Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats. Lipids Health Dis 2011; 10:179. [PMID: 21999902 PMCID: PMC3216256 DOI: 10.1186/1476-511x-10-179] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/14/2011] [Indexed: 01/11/2023] Open
Abstract
Background Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability. Methods Female Sprague-Dawley rats (age 28 d) were randomly assigned (n = 10/group) to be fed a high fat 12% (wt) diet consisting of either corn oil (CO) or n-3 PUFA rich flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs) and thromoboxanes (TXBs) using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR). Results Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats. Conclusions On the basis that the optimal n-3 PUFA sources should provide high digestibility and efficient tissue incorporation with the least tissue lipid peroxidation, TO and SO appeared to be the most beneficial of the n-3 PUFAs sources evaluated in this study.
Collapse
Affiliation(s)
- Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, P.O. Box 6108, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|
9
|
Kumar A, Srikanta AH, Muthukumar SP, Sukumaran UK, Govindaswamy V. Antioxidant and lipid peroxidation activities in rats fed with Aspergillus carbonarius carotenoid. Food Chem Toxicol 2011; 49:3098-103. [PMID: 21925232 DOI: 10.1016/j.fct.2011.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/05/2011] [Accepted: 09/01/2011] [Indexed: 01/16/2023]
Abstract
Effect of feeding partially saturated canthaxanthin (PSC), purified from Aspergillus carbonarius mutant, was studied using four groups of female albino rats (n=6) for 4 weeks. While the control group received basal diet ad libitum, Groups I, II and III were fed with basal diet containing 50, 100 and 250 ppm PSC, respectively. PSC feeding did not cause any significant changes in food intake and there was no gain in body weight either. PSC included in the diet significantly decreased cholesterol in blood. There was 44.75% and 60.54% decrease in LDL-cholesterol in rats fed with 50 and 100 ppm carotenoid. Hepatic ascorbic acid content increased by 44.59% in rats fed with 50 ppm PSC. Dietary PSC at 250 ppm lowered lipid peroxides by 19.49%. Activities of antioxidant enzymes, glutathione transferase and catalase were significantly higher in serum and liver of PSC fed rats compared to the controls. The results suggested that PSC feeding can induce hypocholesterolmic and antioxidant properties in rats.
Collapse
Affiliation(s)
- Anbarasu Kumar
- Department of Food Microbiology, Central Food Technological Research Institute (Council of Scientific and Industrial Research), Mysore 570020, India
| | | | | | | | | |
Collapse
|