Özbek N, Çekirge E, Ocak M, Ocak ÜT. Highly Blue-fluorescent Carbon Quantum Dots Obtained from Medlar Seed for Hg
2+ Determination in Real Water Samples.
J Fluoresc 2023:10.1007/s10895-023-03463-1. [PMID:
37831355 DOI:
10.1007/s10895-023-03463-1]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
The carbon quantum dots (CQDs) have been prepared from medlar seeds with pyrolysis method in an oven at 300 °C. UV-vis absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR) spectroscopy, x-ray diffraction (XRD) technique, x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used in the characterization of CQDs. CQDs, give a strong blue fluorescence under UV lamp (at 365 nm), have a quantum yield of 12.2%. The influence of metal ions such as K+, Mg2+, Ca2+, Be2+, Cr3+, Mn2+, Ni2+, Ag+, Hg2+, and Al3+ on the fluorescence properties of the CQDs was investigated by means of emission spectrophotometry. CQDs altering fluorescence characteristics depending on the excitation wavelength show selectivity for Hg2+ ions with outstanding fluorescence quenching among the tested metal ions. Based on these results, a new fluorimetric method has been developed for the determination of Hg2+ in real water samples. The linear range of method is 1.0 to 5.0 mgL- 1. Limit of detection and limit of quantification are 0.26 and 0.79 mgL- 1, respectively. The proposed method has been successfully used in determination of Hg2+ ions in tap, sea, and stream water samples with application of addition-recovery experiments.
Collapse