1
|
De Pellegrin M, Reck A, Morsczeck C. Sclerostin inhibits Protein kinase C inhibitor GÖ6976 induced osteogenic differentiation of dental follicle cells. Tissue Cell 2024; 90:102522. [PMID: 39173455 DOI: 10.1016/j.tice.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Human dental follicle cells (DFCs) as multipotent stem cells are currently investigated within the field of regenerative medicine considering their potential for the regeneration of dental tissues, bone defects caused by periodontal or degenerative diseases and the treatment of craniofacial disorders. However, molecular mechanisms of the differentiation into mineralizing cells are still inadequately understood. Previous studies have shown that GÖ6976, an inhibitor of classical isoforms of protein kinase C (PKC), enhanced ostogenic differentiation of DFCs. A possible mechanism for increased osteogenic differentiation could be the regulation of ossification inhibitors. This study therefore investigated whether the osteogenic differentiation inhibitor sclerostin (SOST) is regulated by GÖ6976 and whether the addition of sclerostin attenuates the stimulating effect of the PKC inhibitor. We demonstrated that the expression of the sclerostin gene decreased after PKC inhibition by GÖ6976 and that its gene expression is likely maintained by PKC via the BMP signaling pathway. Furthermore, supplementation of osteogenic differentiation medium with sclerostin impairs GÖ6976-induced differentiation of DFCs. Our data suggest that regulation of sclerostin mediates PKC inhibition-induced mineralization of DFCs.
Collapse
Affiliation(s)
- Michela De Pellegrin
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| |
Collapse
|
2
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
3
|
Liu Z, Wu J, Dong Z, Wang Y, Wang G, Chen C, Wang H, Yang Y, Sun Y, Yang M, Fu J, Li J, Zhang Q, Xu Y, Pi J. Prolonged Cadmium Exposure and Osteoclastogenesis: A Mechanistic Mouse and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67009. [PMID: 38896780 PMCID: PMC11218709 DOI: 10.1289/ehp13849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Cadmium (Cd) is a highly toxic and widespread environmental oxidative stressor that causes a myriad of health problems, including osteoporosis and bone damage. Although nuclear factor erythroid 2-related factor 2 (NRF2) and its Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family member nuclear factor erythroid 2-related factor 1 (NRF1) coordinate various stress responses by regulating the transcription of a variety of antioxidant and cytoprotective genes, they play distinct roles in bone metabolism and remodeling. However, the precise roles of both transcription factors in bone loss induced by prolonged Cd exposure remain unclear. OBJECTIVES We aimed to understand the molecular mechanisms underlying Cd-induced bone loss, focusing mainly on the roles of NRF2 and NRF1 in osteoclastogenesis provoked by Cd. METHODS Male wild-type (WT), global Nrf2-knockout (N r f 2 - / - ) and myeloid-specific Nrf2 knockout [Nrf2(M)-KO] mice were administered Cd (50 or 100 ppm ) via drinking water for 8 or 16 wk, followed by micro-computed tomography, histological analyses, and plasma biochemical testing. Osteoclastogenesis was evaluated using bone marrow-derived osteoclast progenitor cells (BM-OPCs) and RAW 264.7 cells in the presence of Cd (10 or 20 nM ) with a combination of genetic and chemical modulations targeting NRF2 and NRF1. RESULTS Compared with relevant control mice, global N r f 2 - / - or Nrf2(M)-KO mice showed exacerbated bone loss and augmented osteoclast activity following exposure to 100 ppm Cd in drinking water for up to 16 wk. In vitro osteoclastogenic analyses suggested that Nrf2-deficient BM-OPCs and RAW 264.7 cells responded more robustly to low levels of Cd (up to 20 nM ) with regard to osteoclast differentiation compared with WT cells. Further mechanistic studies supported a compensatory up-regulation of long isoform of NRF1 (L-NRF1) and subsequent induction of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1 (NFATc1) as the key molecular events in the Nrf2 deficiency-worsened and Cd-provoked osteoclastogenesis. L-Nrf1 silenced (via lentiviral means) Nrf2-knockdown (KD) RAW cells exposed to Cd showed dramatically different NFATc1 and subsequent osteoclastogenesis outcomes compared with the cells of Nrf2-KD alone exposed to Cd, suggesting a mitigating effect of the Nrf1 silencing. In addition, suppression of reactive oxygen species by exogenous antioxidants N -acetyl-l-cysteine (2 mM ) and mitoquinone mesylate (MitoQ; 0.2 μ M ) mitigated the L-NRF1-associated effects on NFATc1-driven osteoclastogenesis outcomes in Cd-exposed Nrf2-KD cells. CONCLUSIONS This in vivo and in vitro study supported the authors' hypothesis that Cd exposure caused bone loss, in which NRF2 and L-NRF1 responded to Cd and osteoclastogenic stimuli in a cooperative, but contradictive, manner to coordinate Nfatc1 expression, osteoclastogenesis and thus bone homeostasis. Our study suggests a novel strategy targeting NRF2 and L-NRF1 to prevent and treat the bone toxicity of Cd. https://doi.org/10.1289/EHP13849.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Jinzhi Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Zhe Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Yanshuai Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Gang Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Experimental and Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Huihui Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Yang Yang
- Department of Rehabilitation Medicine, First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Maowei Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Jiliang Li
- Department of Biology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, P.R. China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, P.R. China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
4
|
Liu X, Zhao W, Hu M, Zhang Y, Wang J, Zhang L. Cadmium-induced annulus fibrosus cell senescence contributes to intervertebral disc degeneration via the JNK/p53 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:588-595. [PMID: 38629100 PMCID: PMC11017839 DOI: 10.22038/ijbms.2024.72312.15728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/18/2023] [Indexed: 04/19/2024]
Abstract
Objectives Investigating the impact of cadmium (Cd) on annulus fibrosus (AF) cells and its potential mechanism was the purpose of the current study. Materials and Methods Cd was cultivated in different concentrations (0, 1, 5, 10, and 20 μM) on AF cells and the potential effects of the metal were assessed. Using the CCK-8 method, cell viability and proliferation were identified. Using transcriptome analysis, the annulus fibrosus cells were sequenced both with and without cadmium chloride. The EdU method was used to determine the rate of cell proliferation; senescence-associated β-galactosidase (SA-β-Gal) staining was used to determine the number of positive cells; and western blot, RT-PCR, and immunofluorescence were used to determine the protein and mRNA expression of senescence-associated proteins (p16, p21, and p53) and c-Jun N-terminal kinase (JNK). Results According to the findings, Cd has the ability to increase the production of senescence-associated genes (p16 and p21) and senescence-associated secreted phenotype (SASP), which includes IL-1β and IL-6. Through the JNK/p53 signal pathway, Cd exposure simultaneously accelerated AF cell senescence and promoted SASP. Following JNK inhibitor (SP600125) treatment, the expression of p53, JNK, and senescence-associated indices were all down-regulated. Conclusion By activating the JNK/p53 signaling pathway, Cd can induce oxidative stress damage and AF cell senescence. These findings could provide a new approach for treating and preventing intervertebral disc degeneration (IVDD) caused by Cd exposure.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
- These authors contributed equally to this work
| | - Wenjie Zhao
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning, China
- These authors contributed equally to this work
| | - Man Hu
- Department of Orthopedics, Dalian Medical University, Dalian 116000, Liaoning, China
- These authors contributed equally to this work
| | - Yu Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jingcheng Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China
| |
Collapse
|
5
|
Wang M, Liu J, Zhu G, Chen X. Low levels of cadmium exposure affect bone by inhibiting Lgr4 expression in osteoblasts and osteoclasts. J Trace Elem Med Biol 2022; 73:127025. [PMID: 35772369 DOI: 10.1016/j.jtemb.2022.127025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cadmium exposure is associated with bone loss. However, the mechanisms involved have not yet been fully understood. Leucine-rich repeat containing GPCR-4 (LGR4) can bind with the receptor activator of nuclear factors κB ligand (RANKL) and inhibit osteoclast formation. In addition, Lgr4 plays an important role in maintaining osteoblast activity. In the present study the effect of cadmium exposure on bone was investigated in terms of Lgr4 expression. METHODS Raw 264.7 cells and primary osteoblasts were exposed to cadmium (0-60 nM/L). The effects of cadmium on osteoclast formation and osteoblast activity were investigated. Osteoclast differentiation-related (Traf6, NFATc1) and osteoblast-related (RANKL; osteoprotegerin, OPG) gene and protein expression were determined. Lgr4 expression in osteoclasts and osteoblasts were also determined. A rat model was established to show the effects of cadmium (50 mg/L) on bone loss and Lgr4 expression in vivo. RESULTS Cadmium exposure inhibited osteoblast activities and stimulated osteoclast formation. Cadmium exposure also inhibited Lgr4 expression in both osteoclasts and osteoblasts. Low dose of RANKL added to the culture medium could promote osteoclast formation in cadmium-pretreated RAW264.7 cells. Blocking Lgr4 in osteoclasts only slightly inhibited cadmium-induced osteoclast formation in cadmium-pretreated RAW264.7 cells. Cadmium significantly upregulated the AKT/ERK signaling pathway. An in vivo study showed that cadmium exposure promoted osteoclast formation and inhibited Lgr4 expression. CONCLUSIONS Our data indicates that cadmium may induce bone loss by inhibiting Lgr4-related bone formation and promoting Lgr4-related osteoclast formation.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jingjing Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu road, Shanghai 200032, China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Institute of Radiation Medicine, Fudan University, 2094 Xietu road, Shanghai 200032, China.
| |
Collapse
|
6
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
7
|
Mei W, Song D, Wu Z, Yang L, Wang P, Zhang R, Zhu X. Resveratrol protects MC3T3-E1 cells against cadmium-induced suppression of osteogenic differentiation by modulating the ERK1/2 and JNK pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112080. [PMID: 33677380 DOI: 10.1016/j.ecoenv.2021.112080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Resveratrol (RES) is a natural polyphenolic compound with a broad range of physiological and pharmacological properties. Previous studies have shown that RES also plays an important role in protecting and promoting early bone metabolism and differentiation. The accumulation of cadmium (Cd), one of the world's most poisonous substances, can inhibit skeletal growth and bone maturation, thus causing osteoporosis. However, whether RES can prevent the Cd-induced inhibition of osteogenic differentiation remains unknown. In this study, we found that RES promoted the early maturity of osteoblastic MC3T3-E1 cells, as demonstrated by the significantly increased mRNA and protein expression of a range of differentiation markers, including alkaline phosphatase (ALP), collagen 1 (COL1), bone morphogenetic protein-2 (BMP-2), and runt-related transcription factor 2 (RUNX2). In contrast, we found that cadmium chloride (CdCl2) inhibited the viability and osteogenic maturity of MC3T3-E1 cells. We also demonstrated that RES pretreatment for 30 min provided significant protection against Cd-induced apoptosis and attenuated the inhibition of osteogenic differentiation induced by Cd by modulating ERK1/2 and JNK signaling. In conclusion, our results indicate that RES is a potential femoral protectant that not only enhance the viability and early differentiation of osteoblasts, but also protect osteoblasts from cadmium damage.
Collapse
Affiliation(s)
- Wenhui Mei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Dan Song
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Zhidi Wu
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Li Yang
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Panpan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Ronghua Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China; Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China.
| | - Xiaofeng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
8
|
Li D, Lin H, Zhang M, Meng J, Hu L, Yu B. Urine Cadmium as a Risk Factor for Osteoporosis and Osteopenia: A Meta-Analysis. Front Med (Lausanne) 2021; 8:648902. [PMID: 33937289 PMCID: PMC8085254 DOI: 10.3389/fmed.2021.648902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: As society ages, the incidence of osteoporosis increases. In several studies, cadmium (Cd) is thought to be related to osteoporosis. However, there are conflicting reports about the relationship between Cd and the risk of osteoporosis and osteopenia. Therefore, the purpose of this meta-analysis was to explore the relationship between Cd and osteoporosis and osteopenia. Methods: Through a review of the literature, articles published in PubMed as of December 2020 were identified and the references of related publications and reviews were reviewed. Ultimately, 17 eligible articles were selected to determine the relationship between blood and urine Cd concentrations for the risk of osteoporosis or osteopenia. In this study, we performed a classification analysis, heterogeneity test, subgroup analysis, and evaluated publication bias. Results: A total of 17 studies were included, including seven on blood Cd and 10 on urine Cd. By combining the odds ratio (OR) and 95% confidence interval (CI) for the lowest and highest categories, the odds ratio of blood Cd concentration that increased the risk of osteoporosis or osteopenia was OR 1.21 (95% CI: 0.84–1.58) and that of urine Cd concentration that increased the risk of osteoporosis or osteopenia was OR 1.80 (95% CI: 1.42–2.18), and the results of the subgroup analysis were also consistent. Conclusions: Our research indicates that while urine cadmium (Cd) concentration may be related to increased risk of osteoporosis and osteopenia, blood Cd concentration may not. Therefore, compared to blood Cd concentration, urine Cd concentration may be more reliable as a risk factor for osteoporosis and osteopenia. This result should be interpreted with caution. Currently. research on the relationship between Cd concentration and osteoporosis and osteopenia is limited, thus, further large, high-quality prospective studies are required to elucidate the relationship between Cd concentration and osteoporosis and osteopenia.
Collapse
Affiliation(s)
- Dong Li
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HaoJie Lin
- Jinan Blood Supply and Security Center, Jinan, China
| | - Min Zhang
- Department of Nursing, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Meng
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - LiYou Hu
- The Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Yu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Ou L, Wang H, Wu Z, Wang P, Yang L, Li X, Sun K, Zhu X, Zhang R. Effects of cadmium on osteoblast cell line: Exportin 1 accumulation, p-JNK activation, DNA damage and cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111668. [PMID: 33396178 DOI: 10.1016/j.ecoenv.2020.111668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
Cadmium is an environmental metal pollutant that has been a focus of research in recent years, which is reported to cause bone disease; however, its skeletal toxicity and the mechanism involved are not yet fully known. Therefore, this study used MC3T3-E1 subclone 14 cells to determine the mechanism of cadmium toxicity on bone. Cadmium chloride (Cd) significantly reduced cell viability in a concentration-dependent manner. Exposure to Cd inhibited osteoblast-related proteins (Runx2, Col-1, STC2) and decreased alkaline phosphatase (ALP) activity. Cd caused Exportin-1 accumulation and induced DNA damage. Cd significantly down-regulated caspase 9 and induced cleaved-PARP, cleaved-caspase 3 protein level. Treatment with JNK inhibitor, SP600125, suppressed cadmium-induced elevation in the ratio of phosphorylation of JNK to JNK. Inhibition of caspase with pan-caspase inhibitor, Z-VAD-FMK, prevented MC3T3-E1 subclone 14 cells from cadmium-induced reduction of Runx2, STC2, caspase 9, and accumulation of cleaved PARP and cleaved caspase 3. Cd-induced cell survival enhanced by SP600125 but rescued by Z-VAD-FMK or KPT-335. These results suggest that cadmium cytotoxicity on bone involved exportin 1 accumulation, phosphorylation of JNK, induction of DNA damage and pro-apoptosis, which was induced by activation of caspase-dependent pathways.
Collapse
Affiliation(s)
- Ling Ou
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; The second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | | | - Zhidi Wu
- Jinan University, Guangzhou, China
| | - Panpan Wang
- Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Li Yang
- Jinan University, Guangzhou, China
| | | | | | - Xiaofeng Zhu
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Ronghua Zhang
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Ma Y, Ran D, Zhao H, Song R, Zou H, Gu J, Yuan Y, Bian J, Zhu J, Liu Z. Cadmium exposure triggers osteoporosis in duck via P2X7/PI3K/AKT-mediated osteoblast and osteoclast differentiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141638. [PMID: 32858297 DOI: 10.1016/j.scitotenv.2020.141638] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Cadmium is a common environmental pollutant that accumulates in the bone and kidneys and causes severe health and social problems. However, the effects of Cd on the occurrence of osteoporosis and its mechanism of action in this process are unclear. To test whether Cd-induced osteoporosis is mediated via P2X7/PI3K/AKT signaling, duck bone marrow mesenchymal stem cells (BMSCs) and bone marrow macrophage cells (BMMs) were treated with Cd for 5 days, and duck embryos were treated with Cd. Micro-CT analysis indicated that Cd-induced osteoporosis occurs in vivo, and histopathology and immunohistochemical analyses also revealed that Cd induced bone damage and the downregulation of osteogenic and bone resorption-related proteins. Cd exposure significantly inhibited the differentiation of BMSCs and BMMs into osteoblasts and osteoclasts in vitro, and promoted osteoblast and osteoclast apoptosis. Cd exposure significantly downregulated the P2X7/PI3K/AKT signaling pathway in vivo and in vitro, and inhibition of this signaling pathway significantly aggravated osteoblast and osteoclast differentiation. Cd exposure also upregulated the OPG/RANKL ratio in vivo and in vitro, further inhibiting osteoclast differentiation. These results demonstrate that Cd causes osteoporosis in duck by inhibiting P2X7/PI3K/AKT signaling and increasing the OPG/RANKL ratio. These results establish a previously unknown mechanism of Cd-induced osteoporosis.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
11
|
Cadmium induces apoptosis via generating reactive oxygen species to activate mitochondrial p53 pathway in primary rat osteoblasts. Toxicology 2020; 446:152611. [PMID: 33031904 DOI: 10.1016/j.tox.2020.152611] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd), a heavy metal produced by various industries, contaminates the environment and seriously damages the skeletal system of humans and animals. Recent studies have reported that Cd can affect the viability of cells, including osteoblasts, both in vivo and in vitro. However, the mechanism of Cd-induced apoptosis remains unclear. In the present study, primary rat osteoblasts were used to investigate the Cd-induced apoptotic mechanism. We found that treatment with 2 and 5 μM Cd for 12 h decreased osteoblast viability and increased apoptosis. Furthermore, Cd increased the generation of reactive oxygen species (ROS), and, thus, DNA damage measured via p-H2AX. The level of the nuclear transcription factor p53 was significantly increased, which upregulated the expression of PUMA, Noxa, Bax, and mitochondrial cytochrome c, downregulated the expression of Bcl-2, and increased the level of cleaved caspase-3. However, pretreatment with the ROS scavenger N-acetyl-l-cysteine (NAC) or the p53 transcription specific inhibitor PFT-α suppressed Cd-induced apoptosis. Our results indicate that Cd can induce apoptosis in osteoblasts by increasing the generation of ROS and activating the mitochondrial p53 signaling pathway, and this mechanism requires the transcriptional activation of p53.
Collapse
|
12
|
Wu L, Song J, Xue J, Xiao T, Wei Q, Zhang Z, Zhang Y, Li Z, Hu Y, Zhang G, Xia H, Li J, Yang X, Liu Q. MircoRNA-143-3p regulating ARL6 is involved in the cadmium-induced inhibition of osteogenic differentiation in human bone marrow mesenchymal stem cells. Toxicol Lett 2020; 331:159-166. [DOI: 10.1016/j.toxlet.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
|
13
|
Unsal V, Dalkıran T, Çiçek M, Kölükçü E. The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Adv Pharm Bull 2020; 10:184-202. [PMID: 32373487 PMCID: PMC7191230 DOI: 10.34172/apb.2020.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a significant ecotoxic heavy metal that adversely affects all biological processes of humans, animals and plants. Exposure to acute and chronic Cd damages many organs in humans and animals (e.g. lung, liver, brain, kidney, and testes). In humans, the Cd concentration at birth is zero, but because the biological half-life is long (about 30 years in humans), the concentration increases with age. The industrial developments of the last century have significantly increased the use of this metal. Especially in developing countries, this consumption is higher. Oxidative stress is the imbalance between antioxidants and oxidants. Cd increases reactive oxygen species (ROS) production and causes oxidative stress. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles. This damage has been associated with various diseases. These include cancer, hypertension, ischemia/perfusion, cardiovascular diseases, chronic obstructive pulmonary disease, diabetes, insulin resistance, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, asthma, skin diseases, chronic kidney disease, eye diseases, neurodegenerative diseases (amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington disease). Natural antioxidants are popular drugs that are used by the majority of people and have few side effects. Natural antioxidants play an important role in reducing free radicals caused by Cd toxicity. Our goal in this review is to establish the relationship between Cd and oxidative stress and to discuss the role of natural antioxidants in reducing Cd toxicity.
Collapse
Affiliation(s)
- Velid Unsal
- Faculty of Health Sciences and Central Research Laboratory, Mardin Artuklu University, Mardin, Turkey
| | - Tahir Dalkıran
- Department of Pediatric Intensive Care, Necip Fazıl City Hospital, 46030, Kahramanmaras, Turkey
| | - Mustafa Çiçek
- Department of Anatomy, Faculty of Medicine, Kahramanmaraş Sütçü imam University, Kahramanmaras, Turkey
| | - Engin Kölükçü
- Department of Urology, Faculty of Medicine, Gaziosmanpasa University,Tokat, Turkey
| |
Collapse
|
14
|
Galea GL, Paradise CR, Meakin LB, Camilleri ET, Taipaleenmaki H, Stein GS, Lanyon LE, Price JS, van Wijnen AJ, Dudakovic A. Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2. Gene 2020; 763S:100027. [PMID: 32550554 PMCID: PMC7285908 DOI: 10.1016/j.gene.2020.100027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 01/08/2023]
Abstract
Mechanical loading-related strains trigger bone formation by osteoblasts while suppressing resorption by osteoclasts, uncoupling the processes of formation and resorption. Osteocytes may orchestrate this process in part by secreting sclerostin (SOST), which inhibits osteoblasts, and expressing receptor activator of nuclear factor-κB ligand (RANKL/TNFSF11) which recruits osteoclasts. Both SOST and RANKL are targets of the master osteoblastic transcription factor RUNX2. Subjecting human osteoblastic Saos-2 cells to strain by four point bending down-regulates their expression of SOST and RANKL without altering RUNX2 expression. RUNX2 knockdown increases basal SOST expression, but does not alter SOST down-regulation following strain. Conversely, RUNX2 knockdown does not alter basal RANKL expression, but prevents its down-regulation by strain. Chromatin immunoprecipitation revealed RUNX2 occupies a region of the RANKL promoter containing a consensus RUNX2 binding site and its occupancy of this site decreases following strain. The expression of epigenetic acetyl and methyl writers and readers was quantified by RT-qPCR to investigate potential epigenetic bases for this change. Strain and RUNX2 knockdown both down-regulate expression of the bromodomain acetyl reader BRD2. BRD2 and RUNX2 co-immunoprecipitate, suggesting interaction within regulatory complexes, and BRD2 was confirmed to interact with the RUNX2 promoter. BRD2 also occupies the RANKL promoter and its occupancy was reduced following exposure to strain. Thus, RUNX2 may contribute to bone remodeling by suppressing basal SOST expression, while facilitating the acute strain-induced down-regulation of RANKL through a mechanosensitive epigenetic loop involving BRD2.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ActD, Actinomycin D
- AzadC, 5-Aza-2′-deoxycytidine
- BRD2
- BRD2, Bromodomain-containing protein 2
- CO2, Carbon Dioxide
- ChIP, Chromatin immunoprecipitation
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco's Modified Eagle Medium
- DNA, Deoxyribonucleic Acid
- Epigenetics
- FACS, Fluorescence-activated cell sorting
- FCS, Fetal calf serum
- GAPDH, Glyceraldehyde 3-Phosphate Dehydrogenase
- HDAC, Histone deacetylase
- HPRT, Hypoxanthine Phosphoribosyltransferase 1
- IU, International unit
- IgG, Immunoglobulin G
- Ki-67, Antigen KI-67
- Mechanical strain
- OPG, Osteoprotegerin/tumour necrosis factor receptor superfamily member 11B
- PBS, Phosphate-Buffered Saline
- PCR, polymerase chain reaction
- PGE2, Prostaglandin E2
- RANKL/TNFSF11, receptor activator of nuclear factor-κB ligand
- RNA, Ribonucleic Acid
- RT-qPCR, Quantitative reverse transcription polymerase chain reaction
- RUNX2
- RUNX2, Runt-related transcription factor 2
- Receptor activator of nuclear factor-κB ligand
- SOST, Sclerostin
- Sclerostin
- eGFP, enhanced green fluorescent protein
- sh, Short hairpin
- β2MG, Beta-2-Microglobulin
Collapse
Affiliation(s)
- Gabriel L Galea
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lee B Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | - Hanna Taipaleenmaki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Lance E Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2019; 34:e22437. [DOI: 10.1002/jbt.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Joannie Lemaire
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Myriam Mireault
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| |
Collapse
|
16
|
Deng X, Tan S, Zhu D, Sun Y, Yu J, Meng X, Zheng L, Liu Y. The combined effect of oleonuezhenide and wedelolactone on proliferation and osteoblastogenesis of bone marrow mesenchymal stem cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153103. [PMID: 31805425 DOI: 10.1016/j.phymed.2019.153103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Regulation of the survival and differentiation of bone marrow mesenchymal stem cells is an essential consideration in the development of targeted drugs for treatment of osteoporosis. PURPOSE The present study aimed to evaluate the combined effect of wedelolactone and oleonuezhenide, two compounds from Chinese formula Er-Zhi-Wan, on osteoblastogenesis and the underlying molecular mechanisms. METHODS MTT assay was taken to evaluate cell proliferation. The alkaline phosphatase (ALP) activity assay was used to determine the activity of ALP. Alizarin red S (ARS) staining was taken to indicate the intensity of the calcium deposits. Quantitative real-time PCR and Western blot were performed to the levels of Runx2, Osteocalcin, and Osterix expression in mouse bone marrow mesenchymal stem cells (BMSCs). Ovariectomized mouse model and bone histomorphometric analysis were also used to research the effects of wedelolactone and oleonuezhenide on bone loss caused by ovariectomy. RESULTS Wedelolactone combined with oleonuezhenide enhanced osteoblast differentiation and bone mineralization. Osteoblastogenesis-related marker genes including osteocalcin, Runx2, and osteorix were upregulated in the presence of wedelolactone and oleonuezhenide. At the molecular level, oleonuezhenide did not affect GSK-3β phosphorylation induced by wedelolactone, but elevated casein kinase 2-alpha (CK2α) expression, resulting in β-catenin and Runx2 nuclear translocation. In addition, 30 µM wedelolactone-induced cytotoxicity in bone marrow mesenchymal stem cells was relieved by 9 µM oleonuezhenide. These cells were protected by oleonuezhenide and maintained osteoblastic activity. Oleonuezhenide increased Wnt5a and CK2α expression. Wedelolactone-reduced extracellular signal-regulated kinase (ERK) phosphorylation was reversed by oleonuezhenide. In ovariectomized mice, administration of wedelolactone and oleonuezhenide prevented ovariectomy-induced bone loss by enhancing osteoblastic activity. CONCLUSION These results suggested that oleonuezhenide enhanced the effects of wedelolactone on osteoblastogenesis. These two compounds could be developed as a combined therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Xue Deng
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Suming Tan
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Di Zhu
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yujiao Sun
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province 130000, China
| | - Xiangling Meng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province 130000, China
| | - Luping Zheng
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China
| | - Yanqiu Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian 116044, China,.
| |
Collapse
|
17
|
Lv YJ, Wei QZ, Zhang YC, Huang R, Li BS, Tan JB, Wang J, Ling HT, Wu SX, Yang XF. Low-dose cadmium exposure acts on rat mesenchymal stem cells via RANKL/OPG and downregulate osteogenic differentiation genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:620-628. [PMID: 30933759 DOI: 10.1016/j.envpol.2019.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/02/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Chronic cadmium (Cd) toxicity is a significant health concern, and the mechanism of long-term low-dose Cd exposure on bone has not been fully elucidated till date. This study aimed to assess the association between rat mesenchymal stem cells (MSCs) and long-term Cd exposure through 38-week intake of CdCl2 at 1 and 2 mg/kg body weight (bw). Increased gene expression of receptor activator of NF-κB ligand (RANKL) and decreased gene expression of osteoprotegerin (OPG) were observed. Fold change of RANKL gene expression (fold change = 1.97) and OPG gene expression (fold change = 1.72) showed statistically significant differences at dose 2 mg/kg bw. Decreased expression of key genes was observed during the early osteogenic differentiation of MSCs. The gene expression of Osterix in 1 mg/kg bw group was decreased by 3.70-fold, and the gene expressions of Osterix, Osteopontin, collagen type I alpha 2 chain (COL1a2) and runt-related transcription factor 2 (RUNX2) in 2 mg/kg bw group were decreased by 1.79, 1.67, 1.45 and 1.35-folds, respectively. Exposure to CdCl2 induced an increase in the renal Cd load, but only an adaptive response was observed, including increased expression of autophagy-related proteins LC3B and Beclin-1, autophagy receptor p62, and heme oxygenase 1 (HO-1), which is an inducible isoform that releases in response to stress. There were no significant changes in the urinary low molecular weight proteins including N-acetyl-b-D-glucosaminidase (NAG), β2-microglobulin and albumin (U-Alb). Urinary calcium (Ca) excretion showed no increase, and no obvious renal histological changes. Taken together, these results indicated that the chronic CdCl2 exposure directly act on MSCs through RANKL/OPG pathway and downregulate the key genes involved in osteogenic differentiation of MSCs. The toxic effect of Cd on bone may occur in parallel to nephrotoxicity.
Collapse
Affiliation(s)
- Ying-Jian Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qin-Zhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang-Cong Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Bai-Sheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jian-Bin Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jing Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Hai-Tuan Ling
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Shi-Xuan Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Liao C, Ou Y, Wu Y, Zhou Y, Liang S, Wang Y. Sclerostin inhibits odontogenic differentiation of human pulp‐derived odontoblast‐like cells under mechanical stress. J Cell Physiol 2019; 234:20779-20789. [PMID: 31025337 DOI: 10.1002/jcp.28684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Chufang Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yanjing Ou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yun Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| |
Collapse
|
19
|
Otero CE, Noeker JA, Brown MM, Wavreil FDM, Harvey WA, Mitchell KA, Heggland SJ. Electronic cigarette liquid exposure induces flavor-dependent osteotoxicity and increases expression of a key bone marker, collagen type I. J Appl Toxicol 2019; 39:888-898. [PMID: 30690755 DOI: 10.1002/jat.3777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Electronic cigarettes (e-cigarettes) are nicotine delivery devices advertised as a healthier alternative to conventional tobacco products, but their rapid rise in popularity outpaces research on potential health consequences. As conventional tobacco use is a risk factor for osteoporosis, this study examines whether exposure to electronic liquid (e-liquid) used in e-cigarettes affects bone-forming osteoblasts. Human MG-63 and Saos-2 osteoblast-like cells were treated for 48 hours with 0.004%-4.0% dilutions of commercially available e-liquids of various flavors with or without nicotine. Changes in cell viability and key osteoblast markers, runt-related transcription factor 2 and Col1a1, were assessed. With all e-liquids tested, cell viability decreased in a dose-dependent manner, which was least pronounced in flavorless e-liquids, most pronounced in cinnamon-flavored e-liquids and occurred independently of nicotine. Col1a1, but not runt-related transcription factor 2, mRNA expression was upregulated in response to coffee-flavored and fruit-flavored e-liquids. Cells treated with a non-cytotoxic concentration of fruit-flavored Mango Blast e-liquid with or without nicotine showed significantly increased collagen type I protein expression compared to culture medium only. We conclude that the degree of osteotoxicity is flavor-dependent and occurs independently of nicotine and that flavored e-liquids reveal collagen type I as a potential target in osteoblasts. This study elucidates potential consequences of e-cigarette use in bone.
Collapse
Affiliation(s)
- Claire E Otero
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID, 83605, USA
| | - Jacob A Noeker
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID, 83605, USA
| | - Mary M Brown
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID, 83605, USA
| | - Florence D M Wavreil
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID, 83605, USA
| | - Wendy A Harvey
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Kristen A Mitchell
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Sara J Heggland
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID, 83605, USA
| |
Collapse
|
20
|
Pi H, Li M, Zou L, Yang M, Deng P, Fan T, Liu M, Tian L, Tu M, Xie J, Chen M, Li H, Xi Y, Zhang L, He M, Lu Y, Chen C, Zhang T, Wang Z, Yu Z, Gao F, Zhou Z. AKT inhibition-mediated dephosphorylation of TFE3 promotes overactive autophagy independent of MTORC1 in cadmium-exposed bone mesenchymal stem cells. Autophagy 2018; 15:565-582. [PMID: 30324847 DOI: 10.1080/15548627.2018.1531198] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cadmium (Cd) is a toxic metal that is widely found in numerous environmental matrices and induces serious adverse effects in various organs and tissues. Bone tissue seems to be a crucial target of Cd contamination. Macroautophagy/autophagy has been proposed to play a pivotal role in Cd-mediated bone toxicity. However, the mechanisms that underlie Cd-induced autophagy are not yet completely understood. We demonstrated that Cd treatment increased autophagic flux and inhibition of the autophagic process using Atg7 gene silencing blocked the Cd-induced mesenchymal stem cell death. Mechanistically, Cd activated nuclear translocation of TFE3 but not that of TFEB or MITF, which contributed to the expression of autophagy-related genes and lysosomal biogenesis. Specifically, Cd decreased expression of phospho-AKT (Ser473). The reduction in AKT activity led to dephosphorylation of cytosolic TFE3 at Ser565 and promoted TFE3 nuclear translocation independently of MTORC1. Notably, Cd treatment increased the activity of PPP3/calcineurin, and pharmacological inhibition of PPP3/calcineurin with FK506 suppressed AKT dephosphorylation and TFE3 activity. These results suggest that PPP3/calcineurin negatively regulates AKT phosphorylation and is involved in Cd-induced TFE3-dependent autophagy. Modulation of the PPP3/calcineurin-AKT-TFE3 autophagic-lysosomal machinery may offer novel therapeutic approaches for the treatment of Cd-induced bone damage. Abbreviations: ACTB: actin: beta; AKT: thymoma viral proto-oncogene; AMPK: AMP-activated protein kinase; ATG: autophagy related; Baf A1: bafilomycin A1; Cd: cadmium; FOXO3: forkhead box O3; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MITF: melanogenesis associated transcription factor; MSC: mesenchymal stem sell; MTORC1: mechanistic target of rapamycin kinase complex 1; RPS6KB1: ribosomal protein S6 kinase: polypeptide 1; SGK1: serum/glucocorticoid regulated kinase 1; SQSTM1/p62: sequestosome 1;TFE3: transcription factor E3; TFEB: transcription factor EB; TFEC: transcription factor EC.
Collapse
Affiliation(s)
- Huifeng Pi
- b Department of Occupational Health , Third Military Medical University , Chongqing , China.,c Department of Aerospace Medicine , Fourth Military Medical University , Xi'an , China
| | - Min Li
- b Department of Occupational Health , Third Military Medical University , Chongqing , China.,d Wuhan General Hospital of Guangzhou Military Region , Wuhan , China
| | - Lingyun Zou
- e Bao'an Maternal and Child Health Hospital , Jinan University , Shenzhen , China
| | - Min Yang
- b Department of Occupational Health , Third Military Medical University , Chongqing , China.,f Department of Gastroenterology, XinQiao Hospital , Third Military Medical University , Chongqing , China
| | - Ping Deng
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Tengfei Fan
- g Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital , Central South University , Changsha , China
| | - Menyu Liu
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Li Tian
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Manyu Tu
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Jia Xie
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Mengyan Chen
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Huijuan Li
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Yu Xi
- a Department of Environmental Medicine, and Department of Critical Care Medicine of the First Affiliated Hospital , Zhejiang University School of Medicine , Hangzhou , China
| | - Lei Zhang
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Mindi He
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Yonghui Lu
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Chunhai Chen
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Tao Zhang
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Zheng Wang
- c Department of Aerospace Medicine , Fourth Military Medical University , Xi'an , China
| | - Zhengping Yu
- b Department of Occupational Health , Third Military Medical University , Chongqing , China
| | - Feng Gao
- c Department of Aerospace Medicine , Fourth Military Medical University , Xi'an , China
| | - Zhou Zhou
- a Department of Environmental Medicine, and Department of Critical Care Medicine of the First Affiliated Hospital , Zhejiang University School of Medicine , Hangzhou , China.,b Department of Occupational Health , Third Military Medical University , Chongqing , China
| |
Collapse
|
21
|
Li JJ, Pang LN, Wu S, Zeng MD. Advances in the Effect of Heavy Metals in Aquatic Environment on the Health Risks for Bone. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/186/3/012057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Monteiro C, Ferreira de Oliveira JMP, Pinho F, Bastos V, Oliveira H, Peixoto F, Santos C. Biochemical and transcriptional analyses of cadmium-induced mitochondrial dysfunction and oxidative stress in human osteoblasts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:705-717. [PMID: 29913117 DOI: 10.1080/15287394.2018.1485122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) accumulation is known to occur predominantly in kidney and liver; however, low-level long-term exposure to Cd may also result in bone damage. Few studies have addressed Cd-induced toxicity in osteoblasts, particularly upon cell mitochondrial energy processing and putative associations with oxidative stress in bone. To assess the influence of Cd treatment on mitochondrial function and oxidative status in osteoblast cells, human MG-63 cells were treated with Cd (up to 65 μM) for 24 or 48 h. Intracellular reactive oxygen species (ROS), lipid and protein oxidation and antioxidant defense mechanisms such as total antioxidant activity (TAA) and gene expression of antioxidant enzymes were analyzed. In addition, Cd-induced effects on mitochondrial function were assessed by analyzing the activity of enzymes involved in mitochondrial respiration, membrane potential (ΔΨm), mitochondrial morphology and adenylate energy charge. Treatment with Cd increased oxidative stress, concomitantly with lipid and protein oxidation. Real-time polymerase chain reaction (qRT-PCR) analyses of antioxidant genes catalase (CAT), glutathione peroxidase 1 (GPX1), glutathione S-reductase (GSR), and superoxide dismutase (SOD1 and SOD2) exhibited a trend toward decrease in transcripts in Cd-stressed cells, particularly a downregulation of GSR. Longer treatment with Cd (48 h) resulted in energy charge states significantly below those commonly observed in living cells. Mitochondrial function was affected by ΔΨm reduction. Inhibition of mitochondrial respiratory chain enzymes and citrate synthase also occurred following Cd treatment. In conclusion, Cd induced mitochondrial dysfunction which appeared to be associated with oxidative stress in human osteoblasts.
Collapse
Affiliation(s)
- Cristina Monteiro
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - José Miguel P Ferreira de Oliveira
- b LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Francisco Pinho
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - Verónica Bastos
- c Department of Biology & LAQV/REQUIMTE , Faculty of Sciences of University of Porto , Porto , Portugal
| | - Helena Oliveira
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - Francisco Peixoto
- d Biology and Environment Department , Chemistry Research Center, University of Trás-os-Montes & Alto Douro , Portugal
| | - Conceição Santos
- c Department of Biology & LAQV/REQUIMTE , Faculty of Sciences of University of Porto , Porto , Portugal
| |
Collapse
|
23
|
Kumar N, Kumari V, Ram C, Bharath Kumar BS, Verma S. Impact of oral cadmium intoxication on levels of different essential trace elements and oxidative stress measures in mice: a response to dose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5401-5411. [PMID: 29209977 DOI: 10.1007/s11356-017-0868-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
The study evaluated the effect of oral intoxication of cadmium and the possible causes of oxidative stress and its preferential accumulation in different organs as well as sub-sequential effects in mice. Twenty-four Swiss albino male mice were divided into three groups viz., normal control group without cadmium chloride (CdCl2), whereas a daily dose of 0.5 and 1.2 mg of CdCl2 was orally administered for a period of a week to dose group 1 (DG-1) and dose group 2 (DG-2), respectively. A significant increase in the severity of cadmium toxicity was observed in animals as evidenced by aggravation in liver enzymes viz., serum alanine aminotransferase and aspartate transaminase, whereas lower levels of antioxidative stress markers in liver and kidney tissues of treated mice were observed as compared to normal control group. A significant depletion of calcium levels in liver tissues of DG-1 (217.36 ± 1.73 μg/g of wet tissues) and DG-2 (186.41 ± 1.56 μg/g of wet tissues) groups, along with Cd accumulation, was observed. To summarize, the current study would increase our understanding with respect to dose-dependent absorption of Cd and its toxicity led to mortality as well as adverse health effects in the body of mice. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Narendra Kumar
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vandna Kumari
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Chand Ram
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | | | - Sunita Verma
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
24
|
Ha TT, Burwell ST, Goodwin ML, Noeker JA, Heggland SJ. Pleiotropic roles of Ca +2/calmodulin-dependent pathways in regulating cadmium-induced toxicity in human osteoblast-like cell lines. Toxicol Lett 2016; 260:18-27. [PMID: 27558804 DOI: 10.1016/j.toxlet.2016.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/20/2016] [Accepted: 08/20/2016] [Indexed: 11/26/2022]
Abstract
The heavy metal cadmium is a widespread environmental contaminant that has gained public attention due to the global increase in cadmium-containing electronic waste. Human exposure to cadmium is linked to the pathogenesis of osteoporosis. We previously reported cadmium induces apoptosis and decreases alkaline phosphatase mRNA expression via extracellular signal-regulated protein kinase (ERK) activation in Saos-2 bone-forming osteoblasts. This study examines the mechanisms of cadmium-induced osteotoxicity by investigating roles of Ca+2/calmodulin-dependent protein kinase (CAMK) pathways. Saos-2 or MG-63 cells were treated for 24 or 48h with 5μM CdCl2 alone or in combination with calmodulin-dependent phosphodiesterase (PDE) inhibitor CGS-9343β; calmodulin-dependent kinase kinase (CAMKK) inhibitor STO-609; or calmodulin-dependent kinase II (CAMKII) inhibitor KN-93. CGS-9343β protected against cadmium-induced toxicity and attenuated ERK activation; STO-609 enhanced toxicity and exacerbated ERK activation, whereas KN-93 had no detectable effect on cadmium-induced toxicity. Furthermore, CGS-9343β co-treatment attenuated cadmium-induced apoptosis; but CGS-9343β did not recover cadmium-induced decrease in ALP activity. The major findings suggest the calmodulin-dependent PDE pathway facilitates cadmium-induced ERK activation leading to apoptosis, whereas the CAMKK pathway plays a protective role against cadmium-induced osteotoxicity via ERK signaling. This research distinguishes itself by identifying pleiotropic roles for CAMK pathways in mediating cadmium's toxicity in osteoblasts.
Collapse
Affiliation(s)
- Thao T Ha
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Shalimar T Burwell
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Matthew L Goodwin
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Jacob A Noeker
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Sara J Heggland
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA.
| |
Collapse
|
25
|
Liu W, Dai N, Wang Y, Xu C, Zhao H, Xia P, Gu J, Liu X, Bian J, Yuan Y, Zhu J, Liu Z. Role of autophagy in cadmium-induced apoptosis of primary rat osteoblasts. Sci Rep 2016; 6:20404. [PMID: 26852917 PMCID: PMC4745071 DOI: 10.1038/srep20404] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
Cadmium (Cd) is a common environmental pollutant that can damage many organs and the fetus. We previously reported that Cd induced apoptosis in primary rat osteoblasts (OBs). OB apoptosis induced by Cd will eventually lead to osteoporosis. In this study, a novel pharmacotherapeutic approach was investigated involving the regulation of autophagy to prevent Cd osteoporosis. The results showed that Cd treatment induced apoptosis in OBs, as demonstrated by the ratio of Bax/Bcl-2, activation of poly (ADP-ribose) polymerase (PARP) and nuclear condensation. In addition, cells treated with Cd were observed to undergo autophagic cell death by monitoring the induction of the beclin 1, autophagy gene 5 (Atg5) and the expression of microtubule-associated protein 1 light chain 3 (LC3). The results indicated that promotion of apoptotic cell death by Cd is accompanied by induction of autophagy in OBs. Interestingly, Cd-mediated apoptotic cell death was suppressed by pretreatment with the autophagy activator rapamycin (RAP) and potentiated by the autophagy inhibitor chloroquine (CQ) or small interfering RNA against beclin 1. These findings suggest that the autophagic response plays a protective role that impedes eventual cell death. Activation of autophagy could therefore be an adjunctive strategy for treatment of Cd-induced osteoporosis.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Nannan Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Chao Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
26
|
Zhao H, Liu W, Wang Y, Dai N, Gu J, Yuan Y, Liu X, Bian J, Liu ZP. Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways. J Vet Sci 2015; 16:297-306. [PMID: 26425111 PMCID: PMC4588015 DOI: 10.4142/jvs.2015.16.3.297] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 01/05/2015] [Accepted: 01/29/2015] [Indexed: 11/27/2022] Open
Abstract
Exposure to cadmium (Cd) induces apoptosis in osteoblasts (OBs); however, little information is available regarding the specific mechanisms of Cd-induced primary rat OB apoptosis. In this study, Cd reduced cell viability, damaged cell membranes and induced apoptosis in OBs. We observed decreased mitochondrial transmembrane potentials, ultrastructure collapse, enhanced caspase-3 activity, and increased concentrations of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 following Cd treatment. Cd also increased the phosphorylation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK)1/2 and c-jun N-terminal kinase (JNK) in OBs. Pretreatment with the caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, ERK1/2 inhibitor (U0126), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) abrogated Cd-induced cell apoptosis. Furthermore, Cd-treated OBs exhibited signs of oxidative stress protection, including increased antioxidant enzymes superoxide dismutase and glutathione reductase levels and decreased formation of reactive oxygen species. Taken together, the results of our study clarified that Cd has direct cytotoxic effects on OBs, which are mediated by caspase- and MAPK pathways in Cd-induced apoptosis of OBs.
Collapse
Affiliation(s)
- Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nannan Dai
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zong-Ping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
27
|
Gebraël C, Jumarie C. Cadmium interference with ERK1/2 and AhR signaling without evidence for cross-talk. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00284b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The possibility that Cd may activate AhR indirectlyviaERK1/2 phosphorylation was tested as a function of enterocytic differentiation status in the human Caco-2 cells.
Collapse
Affiliation(s)
- C. Gebraël
- Département des Sciences Biologiques
- Centre TOXEN
- Université du Québec à Montréal
- Montréal
- Canada
| | - C. Jumarie
- Département des Sciences Biologiques
- Centre TOXEN
- Université du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|
28
|
Kasi RAP, Moi CS, Kien YW, Yian KR, Chin NW, Yen NK, Ponnudurai G, Fong SH. Para-phenylenediamine-induces apoptosis via a pathway dependent on PTK-Ras-Raf-JNK activation but independent of the PI3K/Akt pathway in NRK-52E cells. Mol Med Rep 2014; 11:2262-8. [PMID: 25411820 DOI: 10.3892/mmr.2014.2979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 08/08/2014] [Indexed: 11/06/2022] Open
Abstract
para‑Phenylenediamine (p‑PD) is a potential carcinogen, and widely used in marketed hair dye formulations. In the present study, the role of the protein tyrosine kinase (PTK)/Ras/Raf/c‑Jun N‑terminal kinase (JNK) and phosphoinositide 3‑kinase (PI3k)/protein kinase B (Akt) pathways on the growth of NRK‑52E cells was investigated. The results demonstrated that p‑PD reduced cell viability in a dose‑dependent manner. The cell death due to apoptosis was confirmed by cell cycle analysis and an Annexin‑V‑fluorescein isothiocyanate binding assay. Subsequent to staining with 2',7'‑dichlorofluorescin diacetate, the treated cells demonstrated a significant increase in reactive oxygen species (ROS) generation compared with the controls. The effects of p‑PD on the signalling pathways were analysed by western blotting. p‑PD‑treated cells exhibited an upregulated phospho‑stress‑activated protein kinase/JNK protein expression level and downregulated Ras and Raf protein expression levels; however, Akt, Bcl‑2, Bcl‑XL and Bad protein expression levels were not significantly altered compared with the control. In conclusion, p‑PD induced apoptosis by a PTK/Ras/Raf/JNK‑dependent pathway and was independent of the PI3K/Akt pathway in NRK‑52E cells.
Collapse
Affiliation(s)
- Reena A P Kasi
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chye Soi Moi
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yip Wai Kien
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Koh Rhun Yian
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ng Wei Chin
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ng Khuen Yen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Selangor 47500, Malaysia
| | - Gnanajothy Ponnudurai
- Department of Human Biology, Cells and Molecules, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Seow Heng Fong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
29
|
Baba H, Tsuneyama K, Kumada T, Aoshima K, Imura J. Histopathological analysis for osteomalacia and tubulopathy in itai-itai disease. J Toxicol Sci 2014; 39:91-6. [PMID: 24418713 DOI: 10.2131/jts.39.91] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND & AIMS Cadmium (Cd) is a widespread environmental contaminant that causes both renal tubulopathy and osteomalacia. Osteomalacia is thought to be a result of renal tubulopathy, but there are few studies about the histopathological relationship between the two pathoses. Therefore, in the present study, we examined specimens from cases of itai-itai disease (IID), the most severe form of chronic cadmium poisoning, to evaluate the relationship between them. METHODS We analyzed kidney and bone specimens of 61 IID cases and the data regarding Cd concentration in kidney and bone. Tubulopathy was graded on the basis of a three-step scale (mild, moderate, and severe) using the following three items: the degree of proximal tubular defluxion, thickness of renal cortex, and weight of the kidney. Osteomalacia was evaluated using the relative osteoid volume (ROV). RESULTS There were 15 cases of mild, 19 cases of moderate, and 27 cases of severe tubulopathy. The average ROV was 24.9 ± 2.0%. ROV tended to increase as tubulopathy advanced in severity, and ROV was significantly higher in cases with severe tubulopathy than those with mild or moderate tubulopathy. ROV had a negative correlation with Cd concentration in the kidney but no correlation with that in the bone. CONCLUSIONS Our results suggest that the development of osteomalacia was related to the development of tubulopathy.
Collapse
Affiliation(s)
- Hayato Baba
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | | |
Collapse
|
30
|
Duranova H, Martiniakova M, Omelka R, Grosskopf B, Bobonova I, Toman R. Changes in compact bone microstructure of rats subchronically exposed to cadmium. Acta Vet Scand 2014; 56:64. [PMID: 25279860 PMCID: PMC4189194 DOI: 10.1186/s13028-014-0064-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 09/08/2014] [Indexed: 01/19/2023] Open
Abstract
Background Chronic exposure to cadmium (Cd), even at low concentrations, has an adverse impact on the skeletal system. Histologically, primary and secondary osteons as basic structural elements of compact bone can also be affected by several toxicants leading to changes in bone vascularization and mechanical properties of the bone. The current study was designed to investigate the effect of subchronic peroral exposure to Cd on femoral bone structure including histomorphometry of the osteons in adult male rats. In our study, 20 one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group, young males received a drinking water containing 30 mg of CdCl2/L, for 90 days. Ten one-month-old males without Cd intoxication served as a control group. After 90 days of daily peroral exposure, body weight, femoral weight, femoral length, cortical bone thickness and histological structure of the femora were analysed. Results We found that subchronic peroral application of Cd had no significant effect on body weight, femoral length and cortical bone thickness in adult rats. On the other hand, femoral weight was significantly increased (P < 0.05) in Cd-intoxicated rats. These rats also displayed different microstructure in the middle part of the compact bone where vascular canals expanded into central area of substantia compacta and supplied primary and secondary osteons. Additionally, a few resorption lacunae which are connected with an early stage of osteoporosis were identified in these individuals. Histomorphometrical evaluations showed that all variables (area, perimeter, maximum and minimum diameter) of the primary osteons’ vascular canals, Haversian canals and secondary osteons were significantly decreased (P < 0.05) in the Cd group rats. This fact points to alterations in bone vascularization. Conclusions Subchronic peroral exposure to Cd significantly influences femoral weight and histological structure of compact bone in adult male rats. It induces an early stage of osteoporosis and causes reduced bone vascularization. Histomorphometrical changes of primary and secondary osteons allow for the conclusion that the bone mechanical properties could be weakened in the Cd group rats. The current study significantly expands the knowledge on damaging action of Cd on the bone.
Collapse
|
31
|
Chovancová H, Omelka R, Boboňová I, Formicki G, Toman R, Martiniaková M. Bone adaptation to simultaneous cadmium and diazinon toxicity in adult male rats. POTRAVINARSTVO 2014. [DOI: 10.5219/343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Food contamination from natural or anthropogenic sources poses severe risks to health of human and animals. Bone is a metabolically active organ, which can be affected by various toxic substances, such as cadmium (Cd) and diazinon (DZN), leading to disruption in bone metabolic processes. The present study was designed to investigate the effect of simultaneous peroral administration to Cd and DZN on femoral compact bone structure in adult male rats. A total of twenty 1-month-old male Wistar rats were randomized into two experimental groups. In the first group (EG), young males were dosed with a combination of 30 mg CdCl2/L and 40 mg DZN/L in drinking water, for 90 days. Ten 1-month-old males without Cd-DZN intoxication served as a control group (CG). After 90 days of daily peroral exposure, evaluations of femoral bonemacro- and micro-structure were performed in each group. We found no significant differences in body weight, femoral weight, femoral length and cortical bone thickness between both groups (EG and CG). However, rats from the group EG displayed different microstructure in the middle part of the substantia compacta where primary vascular radial bone tissue appeared. In some cases, vascular expansion was so enormous that canals were also present near the periost. On the other hand, they occurred only near endosteal surfaces in rats from the control group. Moreover, a smaller number of primary and secondary osteons was identified in Cd-DZN-exposed rats. This fact signalizes reduced mechanical properties of their bones. Anyway, our results suggest an adaptive response of compact bone tissue to Cd-DZN-induced toxicity in adult male rats in order to prevent osteonecrosis.
Collapse
|
32
|
Hopa C, Yildirim H, Kara H, Kurtaran R, Alkan M. Synthesis, characterization and anti-proliferative activity of Cd(II) complexes with NNN type pyrazole-based ligand and pseudohalide ligands as coligand. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 121:282-287. [PMID: 24252293 DOI: 10.1016/j.saa.2013.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 05/28/2023]
Abstract
Cd(II) complexes of tridentate nitrogen donor ligand, 2,6-bis(3,4,5-trimethylpyrazolyl)pyridine (btmpp), Cd(btmpp)X2 (X:Cl, ONO or N(CN)2) have been synthesized and characterized by elemental and spectral (FT-IR, (1)H NMR, (13)C NMR, UV-Vis) analyses, differential thermal analysis and single crystal X-ray diffraction studies. The molecular structure of reported complex 1, revealed distorted square-pyramidal geometry around Cadmium. Complexes 1-3 and corresponding ligand were tested for cytotoxic activity against the human carcinoma cell lines HEP3B (hepatocellular carcinoma), PC3 (prostate adenocarcinoma), MCF7 (breast adenocarcinoma) and Saos2 (osteosarcoma). The results show that, complexes are more cytotoxic than the free ligand and complex 2 is the most cytotoxic complex for PC3.
Collapse
Affiliation(s)
- Cigdem Hopa
- University of Balikesir, Faculty of Science and Literature, Department of Chemistry, 10145 Balikesir, Turkey.
| | - Hatice Yildirim
- University of Balikesir, Faculty of Science and Literature, Department of Biology, 10145 Balikesir, Turkey
| | - Hulya Kara
- University of Balikesir, Faculty of Science and Literature, Department of Physics, 10145 Balikesir, Turkey
| | - Raif Kurtaran
- Akdeniz University, Alanya Engineering Faculty, Materials Science and Engineering, 07425, Alanya, Antalya, Turkey
| | - Mahir Alkan
- University of Balikesir, Faculty of Science and Literature, Department of Chemistry, 10145 Balikesir, Turkey
| |
Collapse
|
33
|
Environmental cadmium exposure and osteoporosis: a review. Int J Public Health 2013; 58:737-45. [DOI: 10.1007/s00038-013-0488-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022] Open
|
34
|
Vaspin attenuates the apoptosis of human osteoblasts through ERK signaling pathway. Amino Acids 2012; 44:961-8. [DOI: 10.1007/s00726-012-1425-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/22/2012] [Indexed: 11/25/2022]
|
35
|
Lizotte J, Abed E, Signor C, Malu DT, Cuevas J, Kevorkova O, Sanchez-Dardon J, Satoskar A, Scorza T, Jumarie C, Moreau R. Expression of macrophage migration inhibitory factor by osteoblastic cells: protection against cadmium toxicity. Toxicol Lett 2012; 215:167-73. [PMID: 23085580 DOI: 10.1016/j.toxlet.2012.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022]
Abstract
Exposition to cadmium (Cd) has been linked to bone metabolism alterations and occurrence of osteoporosis. Despite its known renal toxicity which indirectly disrupts bone metabolism through impairment of vitamin D synthesis, increasing evidence argues for the direct action of Cd on bone-forming osteoblasts. Indeed, accumulation of Cd in osteoblasts and metal-induced cell death has been documented but little is known about the intracellular mechanisms of protection against this stress. In this work, we investigated the protection afforded by thiol-containing proteins against Cd cytotoxicity in MC3T3 osteoblastic cells. Viability of MC3T3 cells was reduced by Cd in a concentration-dependent manner with a LC(50) of 7.6±1.1μM. Depletion of glutathione by l-buthionine sulphoximine (BSO) increased cell sensitivity to Cd cytotoxicity, suggesting the involvement of thiol-containing peptides as a mechanism of protection. Accordingly, Cd was shown to promote progressive depletion of reduced thiol content and to stimulate the production of reactive oxygen species (ROS). Interestingly, low non cytotoxic concentrations of Cd increased the gene expression of macrophage migration inhibitory factor (MIF), also a thiol-containing protein. Inhibition of the transcription factor NFκB prevented Cd-dependent upregulation of MIF expression and consequently, increased Cd cytotoxicity in osteoblasts. Moreover, MIF deficient mouse osteoblasts were more sensitive to Cd cytotoxicity than the corresponding control cells. By gel-filtration chromatography, we demonstrated that MIF acts as a thiol-containing protein and thereby promotes Cd complexation. In accordance with its binding ability, addition of recombinant MIF to the culture medium reduced Cd cytotoxicity. Overall, upregulation of MIF expression by Cd may protect against the cytotoxicity of this metal in the osteoblasts.
Collapse
Affiliation(s)
- Jérôme Lizotte
- Laboratoire du Métabolisme Osseux, Centre BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|