1
|
Sadhu SP, Yarla NS, Pragada RR, Konduri P. Anti-inflammatory Activity of PLA 2 Inhibitory Saccharumoside-B. Antiinflamm Antiallergy Agents Med Chem 2022; 21:121-134. [PMID: 35362396 DOI: 10.2174/1871523021666220330143058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Saccharumoside-B and its analogs were found to have anticancer potential in vitro. The present study reports acute toxicity, molecular docking, ADMET profile analysis, and in vitro and in vivo anti-inflammatory activity of saccharumoside-B for the first time. METHODS The in vitro enzyme inhibitory activity of saccharumoside-B on PLA2, COX-1, COX-2, and 5-LOX enzymes was evaluated by the cell-free method, and its effect on TNF-α, IL1β, and IL- 6 secretion levels in LPS stimulated THP-1 human monocytes was determined by ELISA-based methods. The anti-inflammatory activity was evaluated in vivo by carrageenan-induced rat paw edema model. To test its binding affinity at the active site pockets of PLA2 enzymes and assess drug-like properties, docking experiments and ADMET studies were performed. RESULTS Saccharumoside-B showed selective inhibition of the sPLA2 enzyme (IC50 = 7.53 ± 0.232 μM), and thioetheramide-PC was used as a positive control. It showed significant inhibition (P ≤ 0.05) of TNF-α, IL-1β, and IL-6 cytokines compared to the positive control dexamethasone. Saccharumoside-B showed a dose-dependent inhibition of carrageenan-induced rat paw edema, with a maximum inhibition (76.09 ± 0.75) observed at 3 hours after the phlogistic agent injection. Saccharumoside-B potentially binds to the active site pocket of sPLA2 crystal protein (binding energy -7.6 Kcal/Mol). It complies with Lipinski's Rule of Five, showing a promising safety profile. The bioactivity scores suggested it to be a better enzyme inhibitor. CONCLUSION Saccharumoside-B showed significant PLA2 inhibition. It can become a potential lead molecule in synthesizing a new class of selective PLA2 inhibitors with a high safety profile in the future.
Collapse
Affiliation(s)
- Surya Prabha Sadhu
- Department of AU College of Pharmaceutical Sciences and Pharmacology, Andhra University, Visakhapatnam, India
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, India
| | - Nagendra Sastry Yarla
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, India
| | - Rajeswara Rao Pragada
- Department of AU College of Pharmaceutical Sciences, Pharmacology, Andhra University, Visakhapatnam, India
| | - Prasad Konduri
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, India
| |
Collapse
|
2
|
Hricovíniová Z, Mascaretti Š, Hricovíniová J, Čížek A, Jampílek J. New Unnatural Gallotannins: A Way toward Green Antioxidants, Antimicrobials and Antibiofilm Agents. Antioxidants (Basel) 2021; 10:1288. [PMID: 34439536 PMCID: PMC8389200 DOI: 10.3390/antiox10081288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Nature has been a source of inspiration for the development of new pharmaceutically active agents. A series of new unnatural gallotannins (GTs), derived from d-lyxose, d-ribose, l-rhamnose, d-mannose, and d-fructose have been designed and synthesized in order to study the protective and antimicrobial effects of synthetic polyphenols that are structurally related to plant-derived products. The structures of the new compounds were confirmed by various spectroscopic methods. Apart from spectral analysis, the antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and iron reducing power (FRAP) assays. Antibacterial activity of compounds was tested in vitro against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 (reference and control strains), three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. For screening of antimycobacterial effect, a virulent isolate of Mycobacterium tuberculosis and two non-tuberculous mycobacteria were used. Furthermore, antibiofilm activity of structurally different GTs against S. aureus, and their ability to inhibit sortase A, were inspected. Experimental data revealed that the studied GTs are excellent antioxidants and radical-scavenging agents. The compounds exhibited only a moderate antibacterial effect against Gram-positive pathogens S. aureus and E. faecalis and were practically inactive against mycobacteria. However, they were efficient inhibitors and disruptors of S. aureus biofilms in sub-MIC concentrations, and interacted with the quorum-sensing system in Chromobacteriumviolaceum. Overall, these findings suggest that synthetic GTs could be considered as promising candidates for pharmacological, biomedical, consumer products, and for food industry applications.
Collapse
Affiliation(s)
- Zuzana Hricovíniová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovakia
| | - Šárka Mascaretti
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (Š.M.); (J.J.)
| | - Jana Hricovíniová
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia;
| | - Alois Čížek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic;
| | - Josef Jampílek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (Š.M.); (J.J.)
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
3
|
Inhibitory effects of skin permeable glucitol-core containing gallotannins from red maple leaves on elastase and their protective effects on human keratinocytes. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
4
|
Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins. Int J Mol Sci 2020; 21:ijms21072315. [PMID: 32230810 PMCID: PMC7177887 DOI: 10.3390/ijms21072315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
Mineralization of hydrogel biomaterials with calcium phosphate (CaP) is considered advantageous for bone regeneration. Mineralization can be both induced by the enzyme alkaline phosphatase (ALP) and promoted by calcium-binding biomolecules, such as plant-derived polyphenols. In this study, ALP-loaded gellan gum (GG) hydrogels were enriched with gallotannins, a subclass of polyphenols. Five preparations were compared, namely three tannic acids of differing molecular weight (MW), pentagalloyl glucose (PGG), and a gallotannin-rich extract from mango kernel (Mangifera indica L.). Certain gallotannin preparations promoted mineralization to a greater degree than others. The various gallotannin preparations bound differently to ALP and influenced the size of aggregates of ALP, which may be related to ability to promote mineralization. Human osteoblast-like Saos-2 cells grew in eluate from mineralized hydrogels. Gallotannin incorporation impeded cell growth on hydrogels and did not impart antibacterial activity. In conclusion, gallotannin incorporation aided mineralization but reduced cytocompatibility.
Collapse
|
5
|
Hricovíniová J, Ševčovičová A, Hricovíniová Z. Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol In Vitro 2020; 65:104789. [PMID: 32035223 DOI: 10.1016/j.tiv.2020.104789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
New gallotanins, methyl 2,3,4,6-tetra-O-galloyl-α-D-glucoside (G4Glc), methyl 2,3,4,6-tetra-O-galloyl-α-D-mannoside (G4Man), and methyl 2,3,4-tri-O-galloyl-α-L-rhamnoside (G3Rham), have been synthesized in order to study the protective effects of synthetic polyphenols that are structurally related with natural compounds. Apart from spectral analysis, examination of antioxidant ability and protective efficiency showed the differences among newly prepared compounds and commercial antioxidants - gallic acid (GA), methyl gallate (MG), and octyl gallate (OG) applying radical scavenging 1,1-diphenyl-2-picryl-hydrazyl (DPPH), reducing power and iron-chelating assays. The genotoxicity and DNA-protective potential of tested compounds on human peripheral blood mononuclear cells (PBMCs) were evaluated using the single-cell gel electrophoresis (comet assay) and DNA-topology assay. Experimental data revealed that gallotannins G3Rham, G4Man, and G4Glc possess significant radical scavenging/antioxidant activities and manifest very low genotoxic effect on human PBMCs. Moreover, tested compounds considerably reduce the level of DNA damage induced by hydrogen peroxide or Fe2+-ions. The results imply that new synthetic gallotannins can be considered as nontoxic agents for subsequent design of new antioxidants with potential biomedical applications.
Collapse
Affiliation(s)
- Jana Hricovíniová
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic
| | - Zuzana Hricovíniová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic.
| |
Collapse
|
6
|
Machida S, Mukai S, Kono R, Funato M, Saito H, Uchiyama T. Synthesis and Comparative Structure-Activity Study of Carbohydrate-Based Phenolic Compounds as α-Glucosidase Inhibitors and Antioxidants. Molecules 2019; 24:E4340. [PMID: 31783621 PMCID: PMC6930660 DOI: 10.3390/molecules24234340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
Twenty-one natural and unnatural phenolic compounds containing a carbohydrate moiety were synthesized and their structure-activity relationship (SAR) was evaluated for α-glucosidase inhibition and antioxidative activity. Varying the position of the galloyl unit on the 1,5-anhydro-d-glucitol (1,5-AG) core resulted in changes in the α-glucosidase inhibitory activity and notably, particularly strong activity was demonstrated when the galloyl unit was present at the C-2 position. Furthermore, increasing the number of the galloyl units significantly affected the α-glucosidase inhibition, and 2,3,4,6-tetra-galloyl-1,5-AG (54) and 2,3,4,6-tetra-galloyl-d-glucopyranose (61) exhibited excellent activities, which were more than 13-fold higher than the α-glucosidase inhibitory activity of acertannin (37). Moreover, a comparative structure-activity study suggested that a hemiacetal hydroxyl functionality in the carbohydrate core and a biaryl bond of the 4,6-O-hexahydroxydiphenoyl (HHDP) group, which are components of ellagitannins including tellimagrandin I, are not necessary for the α-glucosidase inhibitory activity. Lastly, the antioxidant activity increased proportionally with the number of galloyl units.
Collapse
Affiliation(s)
| | | | | | | | | | - Taketo Uchiyama
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan; (S.M.); (S.M.); (R.K.); (M.F.); (H.S.)
| |
Collapse
|
7
|
Dutt R, Garg V, Khatri N, Madan AK. Phytochemicals in Anticancer Drug Development. Anticancer Agents Med Chem 2019; 19:172-183. [PMID: 30398123 DOI: 10.2174/1871520618666181106115802] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND In spite of major technological advances in conventional therapies, cancer continues to remain the leading cause of mortality worldwide. Phytochemicals are gradually emerging as a rich source of effective but safer agents against many life-threatening diseases. METHODS Various phytochemicals with reported anticancer activity have been simply categorized into major phytoconstituents- alkaloids, polyphenols, saponins, tannins and terpenoids. RESULTS The adverse effects associated with currently available anticancer medications may be overcome by using plant-derived compounds either alone or in combination. Exploration of plant kingdom may provide new leads for the accelerated development of new anticancer agents. CONCLUSION Although numerous potent synthetic drugs have been introduced for cancer chemotherapy, yet their serious toxicity concerns to normal cells apart from drug resistance have emerged as the major obstacles for their clinical utility over a prolonged duration of time. Current status and potential of phytochemicals and their derivatives in cancer therapy have been briefly reviewed in the present manuscript.
Collapse
Affiliation(s)
- Rohit Dutt
- Department of Pharmacy, G.D. Goenka University, Gurgaon-122103, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M. D. University, Rohtak-124001, India
| | - Naveen Khatri
- Faculty of Pharmaceutical Sciences, Pt. B. D. Sharma University of Health Sciences Rohtak- 124001, India
| | - Anil K Madan
- Faculty of Pharmaceutical Sciences, Pt. B. D. Sharma University of Health Sciences Rohtak- 124001, India
| |
Collapse
|
8
|
Gupta A, Singh AK, Kumar R, Ganguly R, Rana HK, Pandey PK, Sethi G, Bishayee A, Pandey AK. Corilagin in Cancer: A Critical Evaluation of Anticancer Activities and Molecular Mechanisms. Molecules 2019; 24:E3399. [PMID: 31546767 PMCID: PMC6767293 DOI: 10.3390/molecules24183399] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), an ellagitannin, is one of the major bioactive compounds present in various plants. Ellagitannins belong to the hydrolyzable tannins, a group of polyphenols. Corilagin shows broad-spectrum biological, and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, and antitumor actions. Natural compounds possessing antitumor activities have attracted significant attention for treatment of cancer. Corilagin has shown inhibitory activity against the growth of numerous cancer cells by prompting cell cycle arrest at the G2/M phase and augmented apoptosis. Corilagin-induced apoptosis and autophagic cell death depends on production of intracellular reactive oxygen species in breast cancer cell line. It blocks the activation of both the canonical Smad and non-canonical extracellular-signal-regulated kinase/Akt (protein kinase B) pathways. The potential apoptotic action of corilagin is mediated by altered expression of procaspase-3, procaspase-8, procaspase-9, poly (ADP ribose) polymerase, and Bcl-2 Bax. In nude mice, corilagin suppressed cholangiocarcinoma growth and downregulated the expression of Notch1 and mammalian target of rapamycin. The aim of this review is to summarize the anticancer efficacy of corilagin with an emphasis on the molecular mechanisms involving various signaling pathways in tumor cells.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Prabhash Kumar Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Polyphenolic Characterization, Antioxidant, and Cytotoxic Activities of Mangifera indica Cultivars from Costa Rica. Foods 2019; 8:foods8090384. [PMID: 31480721 PMCID: PMC6769667 DOI: 10.3390/foods8090384] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
The phenolic profile of skin and flesh from Manifera indica main commercial cultivars (Keitt and Tommy Atkins) in Costa Rica was studied using ultra performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-ESI-MS) on enriched phenolic extracts. A total of 71 different compounds were identified, including 32 gallates and gallotannins (of different polymerization degree, from galloyl hexose monomer up to decagalloyl hexoses and undecagalloyl hexoses); seven hydroxybenzophenone (maclurin and iriflophenone) derivatives, six xanthonoids (including isomangiferin and mangiferin derivatives); 11 phenolic acids (hydroxybenzoic and hydroxycinnamic acid derivatives); and eight flavonoids (rhamnetin and quercetin derivatives). The findings for T. Atkins skin constitute the first report of such a high number and diversity of compounds. Also, it is the first time that the presence of gallotannin decamers and undecamers are reported in the skin and flesh of Keitt cultivar and in T. Atkins skins. In addition, total phenolic content (TPC) was measured with high values especially for fruits' skins, with a TPC of 698.65 and 644.17 mg gallic acid equivalents/g extract, respectively, for Keitt and T. Atkins cultivars. Antioxidant potential using 2,2-diphenyl-1-picrylhidrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods were evaluated, with T. Atkins skin showing the best values for both DPPH (IC50 = 9.97 µg/mL) and ORAC (11.02 mmol TE/g extract). A significant negative correlation was found for samples between TPC and DPPH antioxidant values (r = -0.960, p < 0.05), as well as a significant positive correlation between TPC and ORAC (r = 0.910, p < 0.05) and between DPPH and ORAC antioxidant methods (r = 0.989, p < 0.05). Also, cytotoxicity was evaluated in gastric adenocarcinoma (AGS), hepatocarcinoma (HepG2), and colon adenocarcinoma (SW620), with T. Atkins skin showing the best results (IC50 = 138-175 µg/mL). Finally, for AGS and SW 620 cell lines particularly, a high significant negative correlation was found between cytotoxic activity and gallotannins (r = -0.977 and r = -0.940, respectively) while for the HepG2 cell line, the highest significant negative correlation was found with xanthonoids compounds (r = -0.921).
Collapse
|
10
|
Meda NR, Stevanovic T, Poubelle PE. Anhydroglucitol-core gallotannins from red maple buds modulate viability of human blood neutrophils. Toxicol In Vitro 2019; 60:76-86. [PMID: 31100377 DOI: 10.1016/j.tiv.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Abstract
Apoptosis of neutrophils is an essential checkpoint for the resolution of inflammation by shutting down the deleterious functions of these immune cells. This study investigated the role of anhydroglucitol-core gallotannins (ACGs) in apoptosis increase of human blood neutrophils treated by the hot water extract from red maple buds (RMB). Fractions obtained by liquid-liquid partitioning (ethyl acetate, butanol and water-remaining fractions) of the hot water extract from RMB were assessed for their effects on neutrophil viability by using flow cytometry. These fractions were then phytochemically analyzed to investigate the ability of major compounds to induce neutrophil apoptosis individually. Ethyl acetate and butanol fractions that contained the major ACGs ginnalin A, ginnalin 3,6 and ginnalin C stimulated the apoptosis of neutrophils. The three ACGs at 100 μM significantly increased the rate of the late apoptotic cells. When differentially combined, these ACGs have additive or antagonist effects. These effects are related to the concentrations of the constituents in the mixtures studied, especially so for ginnalin C. GinA increased FADD, phospho-Rad17, SMAC/Diablo and cytochrome C, while decreasing the anti-apoptotic protein catalase. These compounds could be useful for the development of novel therapeutic approaches that facilitate resolution of neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Naamwin R Meda
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie et Géomatique, Centre de Recherche sur les Matériaux Renouvelables (CRMR), Université Laval, 2425 rue de la Terrasse, Pavillon G-H Kruger, Québec, QC G1V 0A6, Canada; Institut des Nutraceutiques et des Aliments Fonctionnels (INAF), Université Laval, 2440 Hochelaga Blvd, Québec, QC G1V 0A6, Canada; Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC G1V 0A6, Canada; Département de Médecine, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Tatjana Stevanovic
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie et Géomatique, Centre de Recherche sur les Matériaux Renouvelables (CRMR), Université Laval, 2425 rue de la Terrasse, Pavillon G-H Kruger, Québec, QC G1V 0A6, Canada; Institut des Nutraceutiques et des Aliments Fonctionnels (INAF), Université Laval, 2440 Hochelaga Blvd, Québec, QC G1V 0A6, Canada; Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Patrice E Poubelle
- Département de Médecine, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
11
|
Kato A, Koyama J, Shinzawa K, Imaeda S, Adachi I, Nash RJ, Fleet GWJ, Shintani M, Takeuchi C, Ishikawa F. Ginnalin B induces differentiation markers and modulates the proliferation/differentiation balance via the upregulation of NOTCH1 in human epidermal keratinocytes. Bioorg Med Chem 2019; 27:2172-2180. [PMID: 31005366 DOI: 10.1016/j.bmc.2019.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 01/02/2023]
Abstract
The red maple and sugar maple (Acer rubrum and A. saccharum, respectively) contain acertannins (ginnalins and maplexins), galloylated derivatives of 1,5-anhydro-d-glucitol (1,5-AG, 1). These compounds have a variety of potential medicinal properties and we have shown that some of them promote the expression of ceramide synthase 3. We now report on the beneficial effects of ginnalin B, (6-O-galloyl-1,5-AG, 5), leading to acceleration of skin metabolism and reduction of the turnover time. Ginnalin B dose-dependently increased the relative amount of keratin 10, keratin 1, and filaggrin gene, with maximal increase of 1.7-, 2.9, and 5.2-fold at 100 μM, respectively. The validation study showed that it had superior capacity to induce multiple stages of keratinocyte differentiation and significantly elevated the immunostaining site of keratin 10 and filaggrin in a 3-dimensional cultured human skin model, by 1.2 and 2.8-fold, respectively. Furthermore, ginnalin B caused the arrest of proliferation at the G0/G1 phase but it did not induce apoptotic cell death in normal human keratinocytes. Molecular studies revealed that ginnalin B up-regulated the levels of NOTCH1 and a concomitant increase p21 expression. Ginnalin B, therefore, represents a new class of promising functional and medical cosmetic compound and it could contribute to the maintenance of homeostasis of the epidermis.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Junna Koyama
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Kenta Shinzawa
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Shuki Imaeda
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Isao Adachi
- Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan
| | - Robert J Nash
- Institute of Biological, Environmental and Rural Sciences/Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Megumi Shintani
- FUSHIMI Pharmaceutical Co. Ltd., Marugame, Kagawa 763-8605, Japan
| | - Chihiro Takeuchi
- FUSHIMI Pharmaceutical Co. Ltd., Marugame, Kagawa 763-8605, Japan
| | | |
Collapse
|
12
|
Masarkar N, Mukherjee S, Goel SK, Nema R. Naturally Derived Formulations and Prospects towards Cancer. Health (London) 2019. [DOI: 10.4236/health.2019.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Setzer WN. The Phytochemistry of Cherokee Aromatic Medicinal Plants. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E121. [PMID: 30424560 PMCID: PMC6313439 DOI: 10.3390/medicines5040121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| |
Collapse
|
14
|
Bi W, He CN, Li XX, Zhou LY, Liu RJ, Zhang S, Li GQ, Chen ZC, Zhang PF. Ginnalin A from Kujin tea (Acer tataricum subsp. ginnala) exhibits a colorectal cancer chemoprevention effect via activation of the Nrf2/HO-1 signaling pathway. Food Funct 2018; 9:2809-2819. [PMID: 29693091 DOI: 10.1039/c8fo00054a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ginnalin A (also known as acertannin) is one of the most important phenolic compounds of several beverage Acer plants. In this study, it is reported for the first time that ginnalin A is an activator of the Nrf2 signaling pathway in human colon cancer cells. Ginnalin A, isolated from the leaves of Acer tataricum subsp. ginnala, exhibited promising preventive activity against colon cancer cells (HCT116, SW480 and SW620) with IC50 values of 24.8 μM, 22.0 μM and 39.7 μM, respectively. In addition, it significantly reduced the colony formation of these cells. Flow cytometry analysis indicated that ginnalin A suppressed cancer proliferation via the induction of cell cycle arrest at the S-phase. Real time PCR analysis demonstrated that ginnalin A can upregulate the mRNA expression levels of Nrf2-related antioxidant genes Nrf2, HO-1 and NQO1. Western blotting analysis revealed that ginnalin A promoted the Nrf2 nuclear translocation and upregulated the proteins Nrf2, HO-1 and NQO1. Moreover, the upregulation of p62 and the inhibition of Keap1 were also found by Western blotting analysis. Therefore, the activation of the Nrf2 signaling pathway was probably induced through the upregulation of p62 and the inhibition of Keap1.
Collapse
Affiliation(s)
- Wu Bi
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rayavarapu S, Yarla NS, Kadiri SK, Bishayee A, Vidavalur S, Tadikonda R, Basha M, Pidugu VR, Dowluru KSVGK, Lakappa DB, Kamal MA, Md Ashraf G, Tarasov VV, Chubarev VN, Klochkov SG, Barreto GE, Bachurin SO, Aliev G. Synthesis of Saccharumoside-B analogue with potential of antiproliferative and pro-apoptotic activities. Sci Rep 2017; 7:8309. [PMID: 28814788 PMCID: PMC5559490 DOI: 10.1038/s41598-017-05832-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 06/09/2017] [Indexed: 01/13/2023] Open
Abstract
A new series of phenolic glycoside esters, saccharumoside-B and its analogs (9b-9n, 10) have been synthesized by the Koenigs-Knorr reaction. Antiproliferative activities of the compounds (9b-9n, 10) were evaluated on various cancer cell lines including, MCF-7 breast, HL-60 leukemia, MIA PaCa-2 pancreatic, DU145 prostate, HeLa cervical and CaCo-2 colon, as well as normal human MCF10A mammary epithelial and human peripheral blood mononuclear cells (PBMC) by MTT assay. Compounds (9b-9n, 10) exhibited considerable antiproliferative effects against cancer cells with IC50 range of 4.43 ± 0.35 to 49.63 ± 3.59 µM, but they are less cytotoxic on normal cells (IC50 > 100 µM). Among all the compounds, 9f showed substantial antiproliferative activity against MCF-7 and HL-60 cells with IC50 of 6.13 ± 0.64 and 4.43 ± 0.35, respectively. Further mechanistic studies of 9f were carried out on MCF-7 and HL-60 cell lines. 9f caused arrest of cell cycle of MCF-7 and HL-60 cells at G0/G1 phase. Apoptotic population elevation, mitochondrial membrane potential loss, increase of cytosolic cytochrome c and Bax levels, decrease of Bcl-2 levels and enhanced caspases-9 and -3 activities were observed in 9f-treated MCF-7 and HL-60 cells. These results demonstrate anticancer and apoptosis-inducing potentials of 9f in MCF-7 and HL-60 cells via intrinsic pathway.
Collapse
Affiliation(s)
- Srinuvasarao Rayavarapu
- Department of Organic Chemistry, Foods, Drugs and Water, College of Science and Technology, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | - Nagendra Sastry Yarla
- Department of Biochemistry and Bioinformatics, School of Life Sciences, Institute of Science, GITAM University, Visakhapatnam, 530 045, Andhra Pradesh, India.,Department of Animal Biology, University of Hyderabad, Hyderabad, 500 046, Telangana, India
| | - Sunanda Kumari Kadiri
- Department of Microbiology, College of Science and Technology, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, 33169, USA
| | - Siddaiah Vidavalur
- Department of Organic Chemistry, Foods, Drugs and Water, College of Science and Technology, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | - Ramu Tadikonda
- Department of Organic Chemistry, Foods, Drugs and Water, College of Science and Technology, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | - Mahaboob Basha
- Department of Organic Chemistry, Foods, Drugs and Water, College of Science and Technology, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | - Vijaya Rao Pidugu
- Excelra Knowledge Solutions Private Limited, NSL SEZ ARENA, IDA Uppal, Hyderabad, 500 039, Telangana, India
| | - Kaladhar S V G K Dowluru
- Department of Microbiology and Bioinformatics, Bilaspur University, Bilaspur, 495 001, Chhattisgarh, India
| | - Dhananjaya Bhadrapura Lakappa
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara, 562 112, Karnataka, India
| | - Mohammad A Kamal
- Enzymoics and Novel Global Community Educational Foundation, Hebersham, NSW, Australia.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Vladimir N Chubarev
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severniy Proezd, Chernogolovka, Moscow Region, 1142432, Russia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D. C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severniy Proezd, Chernogolovka, Moscow Region, 1142432, Russia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Severniy Proezd, Chernogolovka, Moscow Region, 1142432, Russia. .,"GALLY" International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA. .,School of Health Sciences and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA.
| |
Collapse
|
16
|
Meda NR, Poubelle PE, Stevanovic T. Antioxidant Capacity, Phenolic Constituents and Toxicity of Hot Water Extract from Red Maple Buds. Chem Biodivers 2017; 14. [PMID: 28296180 DOI: 10.1002/cbdv.201700028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/08/2017] [Indexed: 01/02/2023]
Abstract
The present study reports, for the first time, the results of the antioxidant capacity and the phenolic composition of a hot water extract from red maple buds (RMB), as well as its safety. In this regard and comparatively to antioxidant standards, this extract exhibits a significant antiradical capacity when tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH· ) and anion superoxide trapping assays. High-resolution mass spectrometric and nuclear magnetic resonance analyses permitted to determine for the first time, in red maple species, cyanidin-3-O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-arabinoside, and quercetin. Also, the quantification of individual phenolics by high-performance liquid chromatography method revealed that ginnalin A at 117.0 mg/g is the major compound of RMB hot water extract. Finally, using flow cytometry evaluation, the extract of RMB was determined to have no toxicity neither to cause significant modification of apoptosis process, up to concentration of 100 μg/ml, on human peripheral blood neutrophils. These results allow anticipating various fields of application of RMB water extract.
Collapse
Affiliation(s)
- Naamwin R Meda
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie et Géomatique, Centre de Recherche sur les Matériaux Renouvelables (CRMR), Université Laval, 2425 rue de la Terrasse, Pavillon G-H Kruger, Québec, QC, G1V 0A6, Canada
- Institut des Nutraceutiques et des Aliments Fonctionnels (INAF), Université Laval, 2440 Hochelaga Blvd, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC, G1V 0A6, Canada
- Département de Médecine, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - Patrice E Poubelle
- Département de Médecine, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHU de Québec, Université Laval, 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - Tatjana Stevanovic
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie et Géomatique, Centre de Recherche sur les Matériaux Renouvelables (CRMR), Université Laval, 2425 rue de la Terrasse, Pavillon G-H Kruger, Québec, QC, G1V 0A6, Canada
- Institut des Nutraceutiques et des Aliments Fonctionnels (INAF), Université Laval, 2440 Hochelaga Blvd, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
17
|
Ma H, Xu J, DaSilva NA, Wang L, Wei Z, Guo L, Johnson SL, Lu W, Xu J, Gu Q, Seeram NP. Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells. Arch Dermatol Res 2017; 309:265-274. [DOI: 10.1007/s00403-017-1728-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/29/2022]
|
18
|
Muhsinah AB, Ma H, DaSilva NA, Yuan T, Seeram NP. Bioactive Glucitol-Core Containing Gallotannins and other Phytochemicals from Silver Maple ( Acer saccharinum) Leaves. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the course of our group's investigation of members of the maple ( Acer) genus, a series of glucitol-core containing gallotannins (GCGs) were isolated and identified (by NMR and HREISMS). Among higher plants, only certain maple species are known to produce GCGs, compounds with potential nutraceutical and cosmetic applications due to their reported antioxidant, antidiabetic, anti-α-glucosidase, anti-glycation, anticancer, and skin health promoting effects. Herein, we sought to investigate whether the previously un-investigated silver maple (Acer saccharinum) species was also a source of GCGs. Nine phenolic compounds, including six GCGs, were identified (by HPLC-DAD analyses using previously isolated standards) as ginnalins A-C (1-3), maplexins B, D, and F (4-6), methyl syringate (7), methyl gallate (8), and 3-methoxy-4-hydroxyphenol-1-β-D-(6-galloyl)-glucopyranoside (9). In addition, one sesquiterpenoid, namely, pubineroid A (10), was isolated and identified (by NMR).
Collapse
Affiliation(s)
- Abdullatif Bin Muhsinah
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Nicholas A. DaSilva
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tao Yuan
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
19
|
Cai Y, Zhang J, Chen NG, Shi Z, Qiu J, He C, Chen M. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins. Med Res Rev 2016; 37:665-701. [PMID: 28004409 DOI: 10.1002/med.21422] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 08/28/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
Abstract
Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (-)-epigallocatechin-3-gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off-taste, and shorter half-life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents.
Collapse
Affiliation(s)
- Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Nelson G Chen
- Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiange Qiu
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
20
|
Evaluation of Antibacterial, Antineoplastic, and Immunomodulatory Activity of Paullinia cupana Seeds Crude Extract and Ethyl-Acetate Fraction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1203274. [PMID: 28053639 PMCID: PMC5174172 DOI: 10.1155/2016/1203274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022]
Abstract
Paullinia cupana (Guarana) is a native plant of Amazon region that has very traditional importance. Its seeds are rich in bioactive compounds, including tannins, which exhibit relevant properties. Objective. This study aimed to evaluate antibacterial, antineoplastic, and immunomodulatory activity of P. cupana seeds crude extract (CE) and ethyl-acetate fraction (EAF). Methods. Antibacterial activity was evaluated by determination of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antineoplastic activity was evaluated by MTT assays in hepatocellular carcinoma (HepG2), breast adenocarcinoma (MCF-7), ductal carcinoma (T47-D), non-Hodgkin's B cell lymphoma (Toledo), T cell leukemia (Jukart), and Acute Leukemia (HL-60) cell lines. BALB/c mice splenocytes were treated to assess IFN-γ, IL-6, IL-17, and IL-10 levels by sandwich ELISA. Results. CE and EAF were not toxic to peripheral blood cells and splenocytes. CE and EAF fractions showed a bacteriostatic activity (MIC = 250 μg/mL) and presented IC50 values of 70.25 μg/mL and 61.18 μg/mL in HL-60 leukemia cell line. All cytokines evaluated had their levels reduced after treatment, following dose-response model. Discussion and Conclusion. Different biological activities were observed for both CE and EAF, suggesting P. cupana as a source of bioactive substances, especially tannins that may be used for several diseases treatments.
Collapse
|
21
|
Kamori A, Kato A, Miyawaki S, Koyama J, Nash RJ, Fleet GW, Miura D, Ishikawa F, Adachi I. Dual action of acertannins as potential regulators of intracellular ceramide levels. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Bi W, Gao Y, Shen J, He C, Liu H, Peng Y, Zhang C, Xiao P. Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): A review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:31-60. [PMID: 27132717 DOI: 10.1016/j.jep.2016.04.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Acer (Aceraceae), commonly known as maple, comprises approximately 129 species that primarily grow in the northern hemisphere, especially in the temperate regions of East Asia, eastern North America, and Europe. These plants have been traditionally used to treat a wide range of diseases in East Asia and North America. Moreover, clinical studies have shown that medicinal plants belonging to Acer are highly effective in the treatment of rheumatism, bruises, hepatic disorders, eye disease, and pain, and in detoxification. This review provides a systematic and constructive overview of the traditional uses, chemical constituents, and pharmacological activities of plants of the genus Acer. MATERIAL AND METHODS This review is based on a literature study of scientific journals and books from libraries and electronic sources such as SciFinder, ScienceDirect, Springer, PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science. The literature in this review related to chemical constituents and pharmacological activities dates from 1922 to the end of October 2015. Furthermore, ethnopharmacological information on this genus was obtained from libraries and herbaria in China and USA. RESULTS In traditional medicine, 40 species, 11 subspecies, and one varieta of the genus Acer are known to exhibit a broad spectrum of biological activities. To date, 331 compounds have been identified from 34 species of the genus Acer, including flavonoids, tannins, phenylpropanoids, diarylheptanoids, terpenoids, benzoic acid derivatives, and several other types of compounds, such as phenylethanoid glycosides and alkaloids. Preliminary pharmacological studies have shown that the extracts and compounds isolated from this genus exhibit a broad spectrum of biological activities such as antioxidant, antitumor, anti-inflammatory, antidiabetic, hepatoprotective, and antiobesity activities, as well as promoting osteoblast differentiation. To date, reports on the toxicity of Acer species to humans are very limited, and the major safety concern of these plants is in the veterinary field. CONCLUSIONS Based on our systematic review, Acer species can be used to treat rheumatism, hepatic disorders, eye disease, pain, etc. effectively. Some indications from ethnomedicine have been validated by pharmacological activities, such as the anti-inflammatory and hepatoprotective activities of the species. The available literature showed that most of the activities of these species can be attributed to flavonoids and tannins. To ensure the safety and efficacy in clinical practice in the future, studies identifying active molecules and clarifying their pharmacological mechanisms as well as toxicity are needed.
Collapse
Affiliation(s)
- Wu Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, People's Republic of China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, People's Republic of China
| | - Ying Gao
- Tennessee Center for Botanical Medicine Research and the Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, People's Republic of China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, People's Republic of China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, People's Republic of China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, People's Republic of China.
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, People's Republic of China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, People's Republic of China
| | - Yong Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, People's Republic of China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, People's Republic of China
| | - Chunhong Zhang
- Baotou Medical College, Baotou 014060, People's Republic of China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, People's Republic of China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, People's Republic of China.
| |
Collapse
|
23
|
|
24
|
Kwon OJ, Bae JS, Lee HY, Hwang JY, Lee EW, Ito H, Kim TH. Pancreatic lipase inhibitory gallotannins from Galla Rhois with inhibitory effects on adipocyte differentiation in 3T3-L1 cells. Molecules 2013; 18:10629-38. [PMID: 24002138 PMCID: PMC6269876 DOI: 10.3390/molecules180910629] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Activity-guided isolation of a methanolic extract of Galla Rhois using pancreatic lipase and 3T3-L1 adipocytes led to the isolation of seven phenolic compounds: protoaphin-fb (1), 2-O-digalloyl-1,3,4,6-tetra-O-galloyl-β-d-glucose (2), 1,2,3,4,6-penta-O-galloyl-β-d-glucose (3), 1,2,4,6-tetra-O-galloyl-β-d-glucose (4), 3-hydroxy-5-methoxy-phenol 1-O-β-d-glucoside (5), methylgallate (6), and gallic acid (7). Their structures were established on the basis of NMR and MS spectroscopic data interpretation. All isolates were evaluated for their inhibitory effects on pancreatic lipase, and compounds 1-5 exhibited potent inhibitory effects on this enzyme, with IC50 values ranging from 30.6 ± 2.4 to 3.5 ± 0.5 μM. In addition, the highly galloylated compound 2 was also found to induce potent inhibition of adipocyte differentiation in 3T3-L1 cells.
Collapse
Affiliation(s)
- O Jun Kwon
- Daegyeong Institute for Regional Program Evaluation, Gyeongsan 712-210, Korea; E-Mail:
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea; E-Mails: (J.-S.B.); (H.Y.L.)
| | - Ha Yeong Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea; E-Mails: (J.-S.B.); (H.Y.L.)
| | - Ju-Young Hwang
- Department of Food Biotechnology, Andong National University, Andong 760-749, Korea; E-Mail:
| | - Eun-Woo Lee
- Department of Life Science and Biotechnology, Dongeui University, Busan 614-714, Korea; E-Mail:
| | - Hideyuki Ito
- Faculty of Health and Welfare Sciences, Okayama Prefectural University, Okayama 719-1197, Japan; E-Mails:
| | - Tae Hoon Kim
- Department of Herbal Medicinal Pharmacology, Daegu Haany University, Gyeongsan 712-715, Korea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-53-819-1371; Fax: +82-53-819-1339
| |
Collapse
|