1
|
Triphenyltin(IV) dithiocarbamate compound induces genotoxicity and cytotoxicity in K562 human erythroleukemia cells primarily via mitochondria-mediated apoptosis. Food Chem Toxicol 2022; 168:113336. [PMID: 35963475 DOI: 10.1016/j.fct.2022.113336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
Abstract
The novel di-and triphenyltin(IV) dithiocarbamate compounds represented as RnSnL2 (where R = C4H9, C6H5; n = 2,3; L = N,N-dithiocarbamate), Ph2Sn(N,N-diisopropyldithiocarbamate) (OC1), Ph3Sn(N,N-diisopropyldithiocarbamate) (OC2), Ph2Sn(N,N-diallyldithiocarbamate) (OC3), Ph3Sn(N,N-diallyldithiocarbamate) (OC4), and Ph2Sn(N,N-diethyldithiocarbamate) (OC5) were assessed for their cytotoxicity in K562 human erythroleukemia cells. All compounds inhibited the growth of cells at low micromolar concentrations (<10 μM), and the mechanism underlying their antiproliferative effects on K562 cells was apoptosis, as corroborated by the exposure of plasma membrane phosphatidylserine. OC2, which showed the most promising antiproliferative activity, was selected for further analyses. The results demonstrated that OC2 induced apoptosis in K562 cells via an intrinsic mitochondrial pathway triggered upon DNA damage, an early apoptotic signal. Subsequently, OC2 produced excessive intracellular reactive oxygen species. The role of oxidative stress was corroborated by the significant reduction in GSH levels and percentage of apoptosis in NAC-pretreated cells. OC2 could arrest the cell cycle progression in the S phase. These new findings elucidate the antiproliferative potential of OC2 in the K562 human erythroleukemia cells and warrant further investigation, specifically to determine the exact signaling pathway underlying its antileukemic efficacy.
Collapse
|
2
|
Synthesis and cytotoxic activity of organotin(IV) diallyldithiocarbamate compounds as anticancer agent towards colon adenocarcinoma cells (HT-29). Saudi J Biol Sci 2021; 28:3160-3168. [PMID: 34025187 PMCID: PMC8117248 DOI: 10.1016/j.sjbs.2021.02.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023] Open
Abstract
Context Diphenyltin(IV) diallyldithiocarbamate compound (Compound 1) and triphenyltin(IV) diallyldithiocarbamate compound (Compound 2) are two newly synthesised compounds of organotin(IV) with diallyldithiocarbamate ligands. Objective To assess the cytotoxic effects of two synthesised compounds against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells. Materials and methods Two successfully synthesised compounds were characterised using elemental (carbon, hydrogen, nitrogen, and sulphur) analysis, Fourier-Transform Infrared (FTIR), and 1H, 13C 119Sn Nucleus Magnetic Resonance (NMR) spectroscopies. The single-crystal structure of both compounds was determined by X-ray single-crystal analysis. The cytotoxicity of the compounds was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay upon 24 h of treatment. While the mode of cell death was determined based on the externalisation of phosphatidylserine using a flow cytometer. Results The elemental analysis data of the two compounds showed an agreement with the suggested formula of (C6H5)2Sn[S2CN(C3H5)2]2 for Compound 1 and (C6H5)3Sn[S2CN(C3H5)2] for Compound 2. The two major peaks of infrared absorbance, i.e., ν(C = N) and ν(C = S) were detected at the range of 1475–1479 cm−1 and 972–977 cm−1, respectively. The chemical shift of carbon in NCS2 group for Compound 1 and 2 were found at 200.82 and 197.79 ppm. The crystal structure of Compound 1 showed that it is six coordinated and crystallised in monoclinic, P21/c space group. While the crystal structure of Compound 2 is five coordinated and crystallised in monoclinic, P21/c space group. The cytotoxicity (IC50) of the two compounds against HT-29 cell were 2.36 μM and 0.39 μM. Meanwhile, the percentage of cell death modes between 60% and 75% for compound 1 and compound 2 were mainly due to apoptosis, suggesting that both compounds induced growth arrest. Conclusion Our study concluded that the synthesised compounds showed potent cytotoxicity towards HT-29 cell, with the triphenyltin(IV) compound showing the highest effect compared to diphenyltin(IV).
Collapse
|
3
|
Cytoprotective effects of (E)-N-(2-(3, 5-dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) against 4-nitroquinoline 1-oxide-induced damage in CCD-18Co human colon fibroblast cells. PLoS One 2020; 15:e0223344. [PMID: 32365104 PMCID: PMC7197815 DOI: 10.1371/journal.pone.0223344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Stilbenes are a group of chemicals characterized with the presence of 1,2-diphenylethylene. Previously, our group has demonstrated that synthesized (E)-N-(2-(3, 5-dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) possesses potential chemopreventive activity specifically inducing NAD(P)H:quinone oxidoreductase 1 (NQO1) protein expression and activity. In this study, the cytoprotective effects of BK3C231 on cellular DNA and mitochondria were investigated in normal human colon fibroblast, CCD-18Co cells. The cells were pretreated with BK3C231 prior to exposure to the carcinogen 4-nitroquinoline 1-oxide (4NQO). BK3C231 was able to inhibit 4NQO-induced cytotoxicity. Cells treated with 4NQO alone caused high level of DNA and mitochondrial damages. However, pretreatment with BK3C231 protected against these damages by reducing DNA strand breaks and micronucleus formation as well as decreasing losses of mitochondrial membrane potential (ΔΨm) and cardiolipin. Interestingly, our study has demonstrated that nitrosative stress instead of oxidative stress was involved in 4NQO-induced DNA and mitochondrial damages. Inhibition of 4NQO-induced nitrosative stress by BK3C231 was observed through a decrease in nitric oxide (NO) level and an increase in glutathione (GSH) level. These new findings elucidate the cytoprotective potential of BK3C231 in human colon fibroblast CCD-18Co cell model which warrants further investigation into its chemopreventive role.
Collapse
|
4
|
Miladiyah I, Jumina J, Haryana SM, Mustofa M. Biological activity, quantitative structure-activity relationship analysis, and molecular docking of xanthone derivatives as anticancer drugs. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:149-158. [PMID: 29391779 PMCID: PMC5774476 DOI: 10.2147/dddt.s149973] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Xanthone derivatives have a wide range of pharmacological activities, such as those involving antibacterial, antiviral, antimalarial, anthelmintic, anti-inflammatory, antiprotozoal, and anticancer properties. Among these, we investigated the anticancer properties of xanthone. This research aimed to analyze the biological activity of ten novel xanthone derivatives, to investigate the most contributing-descriptors for their cytotoxic activities, and to examine the possible mechanism of actions of xanthone compound through molecular docking. Materials and methods The cytotoxic tests were carried out on WiDR and Vero cell lines, by a 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay method. The structural features required for xanthone’s anticancer activity were conducted by using the semi-empirical Austin Model-1 method, and continued with quantitative structure-activity relationship (QSAR) analysis using BuildQSAR program. The study of the possible mechanism of actions of the selected xanthone compound was done through molecular docking with PLANTS. Results The three novel xanthone derivatives (compounds 5, 7, and 8) exhibited cytotoxic activity with compound 5 showed the highest degree of cytotoxicity at concentration 9.23 µg/mL (37.8 µM). The following best equation model was obtained from the BuildQSAR calculation: log 1/IC50 = −8.124 qC1 −35.088 qC2 −6.008 qC3 + 1.831 u + 0.540 logP −9.115 (n = 10, r = 0.976, s = 0.144, F = 15.920, Q2 = 0.651, SPRESS = 0.390). This equation model generated 15 proposed new xanthone compounds with better-predicted anticancer activities. A molecular docking study of compound 5 showed that xanthone formed binding interactions with some receptors involved in cancer pathology, including telomerase, tumor-promoting inflammation (COX-2), and cyclin-dependent kinase-2 (CDK2) inhibitor. Conclusion The results suggested that compound 5 showed the best cytotoxic activity among the xanthone derivatives tested. QSAR analysis showed that the descriptors contributed to xanthone’s cytotoxic activity were the net atomic charge at qC1, qC2, and qC3 positions, also dipole moment and logP. Compound 5 was suspected to be cytotoxic by its inhibition of telomerase, COX-2, and CDK2 receptors.
Collapse
Affiliation(s)
- Isnatin Miladiyah
- Pharmacology Department, Faculty of Medicine, Islamic University of Indonesia.,Doctorate Program of Medical Science and Health, Faculty of Medicine
| | - Jumina Jumina
- Chemistry Department, Faculty of Mathematics and Natural Sciences
| | | | - Mustofa Mustofa
- Pharmacology and Therapeutic Department, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Gómez-Verjan J, Rodríguez-Hernández K, Reyes-Chilpa R. Bioactive Coumarins and Xanthones From Calophyllum Genus and Analysis of Their Druglikeness and Toxicological Properties. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017; 53. [PMCID: PMC7152109 DOI: 10.1016/b978-0-444-63930-1.00008-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calophyllum spp. (Calophyllaceae) is a genus of tropical trees valued in the chemopharmacological industry as an important source of biogenetically related coumarins and xanthones, which can lead to the development of new drugs due to their relevant pharmacological activities and diversity of molecular structural. These compounds have relevant pharmacological activities, such as: cytotoxicity against human tumor cell lines (especially leukemia), parasites (Plasmodium, Leshmania, and Trypanosoma), retroviruses (e.g., HIV), and Mycobacterium tuberculosis. Chemoinformatic and toxicoinformatic tools were used here to perform a computational analysis of 70 coumarins and 70 xanthones isolated from this genus in order to explore their potential as new drugs. Most coumarins from this genus possess similar patterns of druglikeness with differences in its physicochemical properties. Xanthones, on the other hand, show quite similar physicochemical properties and druglikeness. It is interesting to note that the vast majority of these compounds (57 coumarins and 59 xanthones) are in compliance with Lipinski´s Rule of Five. Remarkably, two xanthones (2-hydroxyxanthone and caledonixanthone-B) have leadlikeness potential that accordingly with chemoinformatic analysis may target MAO A and B, respectively, and therefore may exhibit antidepressant potential. These compounds also target tyrosine-phosphorilation-regulated kinase 1A (DYRK1A) which is over-expressed in a variety of hematological and brain cancers, therefore they could act as anticancer compounds. Several toxicological predictions were also depicted. Coumarins could be an irritant and may affect the reproductive system, while xanthones may have mutagenic results. To our knowledge, this is the first chemoinformatic report on the main active compounds of this genus and its potential for drug development.
Collapse
Affiliation(s)
- J.C. Gómez-Verjan
- Department of Basic Research, National Institute of Geriatrics, Mexico City, Mexico
| | | | - R. Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, México City, México,Corresponding author:
| |
Collapse
|
6
|
Herbal Formulation C168 Attenuates Proliferation and Induces Apoptosis in HCT 116 Human Colorectal Carcinoma Cells: Role of Oxidative Stress and DNA Damage. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2091085. [PMID: 26884792 PMCID: PMC4739220 DOI: 10.1155/2016/2091085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022]
Abstract
The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME) on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.
Collapse
|
7
|
Seo KH, Ryu HW, Park MJ, Park KH, Kim JH, Lee MJ, Kang HJ, Kim SL, Lee JH, Seo WD. Mangosenone F, A Furanoxanthone from Garciana mangostana, Induces Reactive Oxygen Species-Mediated Apoptosis in Lung Cancer Cells and Decreases Xenograft Tumor Growth. Phytother Res 2015; 29:1753-60. [PMID: 26310849 DOI: 10.1002/ptr.5428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 11/08/2022]
Abstract
Mangosenone F (MSF), a natural xanthone, was isolated form Carcinia mangotana, and a few studies have reported its glycosidase inhibitor effect. In this study we investigated the anti lung cancer effect of MSF both in vitro and in vivo. MSF inhibited cancer cell cytotoxicity and induced and induced apoptosis via reactive oxygen species (ROS) generation in NCI-H460. MSF treatment also showed in pronounced release of apoptogenic cytochrome c from the mitochondria to the cytosol, downregulation of Bcl-2 and Bcl-xL, and upregulation of Bax, suggesting that caspase-mediated pathways were involved in MSF-induced apoptosis. ROS activation of the mitogen-activated protein kinase signaling pathway was shown to play a predominant role in the apoptosis mechanism of MSF. Compared with cisplatin treatment, MSF treatment showed significantly increased inhibition of the growth of NCI-H460 cells xenografted in nude mice. Together, these results indicate the potential of MSF as a candidate natural anticancer drug by promoting ROS production.
Collapse
Affiliation(s)
- Kyung Hye Seo
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, 363-883, Republic of Korea
| | - Mi Jin Park
- Division of Applied Biosciences College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 program), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jin Hyo Kim
- Division of Applied Life Science (BK21 program), Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mi-Ja Lee
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Hyeon Jung Kang
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Sun Lim Kim
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Jin Hwan Lee
- National Institute of Chemical Safety, Ministry of Environment, Daejeon, 305-343, Republic of Korea
| | - Woo Duck Seo
- Crop Foundation Division, National Institue of Crop Science, Rural Development Administration, Wanju-Gun, Jeollabuk-do, 565-851, Republic of Korea
| |
Collapse
|
8
|
Liu WH, Liu YW, Chen ZF, Chiou WF, Tsai YC, Chen CC. Calophyllolide content in Calophyllum inophyllum at different stages of maturity and its osteogenic activity. Molecules 2015. [PMID: 26198219 PMCID: PMC6332356 DOI: 10.3390/molecules200712314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Calophyllum inophyllum is a coastal plant rich in natural substances. Its ingredients have been used for the development of an anti-human immunodeficiency virus (HIV) drug. In this study, we collected C. inophyllum fruit, and the ethanol extract of the fruit was chromatographically separated using silica gel and Sephadex LH-20 columns to obtain the major compound, calophyllolide. The fruits were harvested from September to December in 2011; a quantitative analysis of the calophyllolide content was conducted using HPLC to explore the differences between the different parts of the fruit during the growing season. The results showed that in fruits of C. inophyllum, calophyllolide exists only in the nuts, and dried nuts contain approximately 2 mg·g−1 of calophyllolide. The calophyllolide levels in the nuts decreased during maturity. In addition, calophyllolide dose-dependently enhanced alkaline phosphatase (ALP) activity in murine osteoblastic MC3T3-E1 cells, without significant cytotoxicity. The expression of osteoblastic genes, ALP and osteocalcin (OCN), were increased by calophyllolide. Calophyllolide induced osteoblasts differentiation also evidenced by increasing mineralization and ALP staining.
Collapse
Affiliation(s)
- Wei-Hsien Liu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Beitou Dist., Taipei 11221, Taiwan.
| | - Yen-Wenn Liu
- National Research Institute of Chinese Medicine, No. 155-1, Li-Nong St., Sec. 2, Beitou Dist., Taipei 11221, Taiwan.
| | - Zih-Fong Chen
- Department of Biotechnology, HungKuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan.
| | - Wen-Fei Chiou
- National Research Institute of Chinese Medicine, No. 155-1, Li-Nong St., Sec. 2, Beitou Dist., Taipei 11221, Taiwan.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Beitou Dist., Taipei 11221, Taiwan.
| | - Chien-Chih Chen
- Department of Biotechnology, HungKuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan.
- Department of Nursing, HungKuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan.
| |
Collapse
|