1
|
Naik S, Mishra M. Exploration of Teratogenic and Genotoxic Effects on Model Organism Drosophila melanogaster. Methods Mol Biol 2024; 2753:317-330. [PMID: 38285347 DOI: 10.1007/978-1-0716-3625-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Drosophila melanogaster is one of the crucial in vivo models in terms of analyzing the toxicity of various unknown chemicals. Every part of the fly serves as a model in metabolic and therapeutic approaches. Genotoxic and teratogenic compounds are exposed to Drosophila through the oral route. Further, the toxicity of genotoxic compounds is analyzed in Drosophila's gut, hemolymph, and phenotype. The toxicity of teratogen compounds is also analyzed using a Drosophila embryo. The current chapter summarizes several techniques that are used to detect the genotoxicity and teratogenicity of any unknown compound in this model.
Collapse
Affiliation(s)
- Seekha Naik
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India.
| |
Collapse
|
2
|
Ortiz-Zamora L, Ferreira JV, de Oliveira NKS, de Molfetta FA, Hage-Melim LIS, Fernandes CP, Oliveira AEMFM. Potential implications of vouacapan compounds for insecticidal activity: an in silico study. Recent Pat Biotechnol 2022; 16:155-173. [PMID: 34994338 DOI: 10.2174/1872208316666220106110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/11/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND From the fruits and seeds of the species of Pterodon, it is possible to obtain two main products: the essential oil and oleoresin. In oleoresin, numerous vouacapan compounds have been demonstrated to have biological potential, including insecticidal activity. OBJECTIVE In silico studies were performed to identify potential candidates for natural insecticides among the vouacapans present in the genus Pterodon. MATERIALS AND METHODS Molecular docking and molecular dynamics studies were performed to analyze the interaction of vouacapan compounds with acetylcholinesterase of Drosophila melanogaster. Pharmacokinetic parameters regarding physicochemical properties, plasma protein binding, and activity in the central nervous system were evaluated. The toxicological properties of the selected molecules were predicted using Malathion as the reference compound. RESULTS 6α,7β-dimethoxivouacapan-17-ene (15) showed a high number of interactions and scores in molecular docking studies. This result suggests that this compound exhibits an inhibitory activity of the enzyme acetylcholinesterase. Regarding physicochemical properties, this compound showed the best results, besides presenting low cutaneous permeability values, suggesting null absorption. Molecular dynamics studies demonstrated few conformational changes in the structure of the complex formed by compound 4 and acetylcholinesterase enzyme throughout the simulation time. CONCLUSION It was determined that compound 4 (vouacapan 6α,7β,17β,19-tetraol) is an excellent candidate for usage as a natural insecticide.
Collapse
Affiliation(s)
- Lisset Ortiz-Zamora
- Post-Graduate Program in Tropical Biodiversity, Amapá Federal University, Macapá, Amapá, Brazil
- Laboratory of Phytopharmaceutical Nanobiotechnology, Amapá Federal University, Macapá, Amapá, Brazil
| | - Jaderson V Ferreira
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Macapá, Amapá, Brazil
| | - Nayana K S de Oliveira
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Macapá, Amapá, Brazil
| | - Fábio A de Molfetta
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Lorane I S Hage-Melim
- Laboratory of Pharmaceutical and Medicinal Chemistry (PharMedChem), Federal University of Amapá, Macapá, Amapá, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Amapá Federal University, Macapá, Amapá, Brazil
| | - Caio P Fernandes
- Post-Graduate Program in Pharmaceutical Sciences, Amapá Federal University, Macapá, Amapá, Brazil
| | - Anna E M F M Oliveira
- Post-Graduate Program in Pharmaceutical Sciences, Amapá Federal University, Macapá, Amapá, Brazil
| |
Collapse
|
3
|
Teixeira da Silva T, Braga Martins J, Do Socorro de Brito Lopes M, de Almeida PM, Silva Sá JL, Alline Martins F. Modulating effect of DL-kavain on the mutagenicity and carcinogenicity induced by doxorubicin in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:769-782. [PMID: 34176449 DOI: 10.1080/15287394.2021.1942354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Kavain, kavalactone, present in Piper methysticum exhibits anticonvulsive, analgesic, anxiolytic, antiepileptic, antithrombotic, anti-inflammatory and antioxidant properties. Given its importance, the aim of the present study was to assess (1) the mutagenic and carcinogenicity of kavain administered alone and (2) the antimutagenic and anticarcinogenic potential when administered simultaneously with the chemotherapeutic drug doxorubicin (DXR) using the Somatic Mutation and Recombination Test (SMART) and Epithelial Tumor Test (ETT) using Drosophila melanogaster as a model system. Third-stage larvae from a standard (ST) and high metabolic bioactivation (HB) crosses were treated with different kavain concentrations (32, 64 or 128 μg/ml), alone or in conjunction with DXR (0.125 mg/ml). In ST descendants, kavain produced no significant mutagenic or recombinogenic effects. In the HB cross, mutagenic activity was observed at kavain concentrations of 64 and 128 μg/ml. In the DXR and kavain co-treatment, a modulating effect of the DXR-mediated mutagenic response dependent upon the concentration was detected in both crosses. In ETT, no marked carcinogenic or anticarcinogenic activity was noted for kavain. However, when kavain was combined with DXR synergistic induction of tumors by the chemotherapeutic drug occurred indicating that kavain enhanced the carcinogenic action of DXR.
Collapse
Affiliation(s)
- Thaís Teixeira da Silva
- Department of Chemistry, State Post-Graduation Program in Chemistry, University of Piauí, Teresina, Piauí, Brazil
- Laboratory of Genetics, Center for Natural Sciences, State University of Piauí, Teresina, Piauí, Brazil
| | - Júlia Braga Martins
- Laboratory of Genetics, Center for Natural Sciences, State University of Piauí, Teresina, Piauí, Brazil
| | | | - Pedro Marcos de Almeida
- Laboratory of Genetics, Center for Natural Sciences, State University of Piauí, Teresina, Piauí, Brazil
- Department of Genetics, Health Sciences Center, State University of Piauí, Teresina, Piauí, Brazil
| | - José Luiz Silva Sá
- Department of Chemistry, State Post-Graduation Program in Chemistry, University of Piauí, Teresina, Piauí, Brazil
| | - Francielle Alline Martins
- Department of Chemistry, State Post-Graduation Program in Chemistry, University of Piauí, Teresina, Piauí, Brazil
- Laboratory of Genetics, Center for Natural Sciences, State University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
4
|
Vasconcelos MA, Orsolin PC, Oliveira VC, Lima PMAP, Naves MPC, de Morais CR, Nicolau-Júnior N, Bonetti AM, Spanó MA. Modulating effect of vitamin D3 on the mutagenicity and carcinogenicity of doxorubicin in Drosophila melanogaster and in silico studies. Food Chem Toxicol 2020; 143:111549. [PMID: 32640329 PMCID: PMC7335493 DOI: 10.1016/j.fct.2020.111549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D3 (VD3) deficiency increases DNA damage, while supplementation may exert a pro-oxidant activity, prevent viral infections and formation of tumors. The aim of this study was to investigate the mutagenicity and carcinogenicity of VD3 alone or in combination with doxorubicin (DXR) using the Somatic Mutation and Recombination Test and the Epithelial Tumor Test, both in Drosophila melanogaster. For better understanding of the molecular interactions of VD3 and receptors, in silico analysis were performed with molecular docking associated with molecular dynamics. Findings revealed that VD3 alone did not increase the frequency of mutant spots, but reduced the frequency of mutant spots when co-administered with DXR. In addition, VD3 did not alter the recombinogenic effect of DXR in both ST and HB crosses. VD3 alone did not increase the total frequency of tumor, but significantly reduced the total frequency of tumor when co-administered with DXR. Molecular modeling and molecular dynamics between calcitriol and Ecdysone Receptor (EcR) showed a stable interaction, indicating the possibility of signal transduction between VD3 and EcR. In conclusion, under these experimental conditions, VD3 has modulatory effects on the mutagenicity and carcinogenicity induced by DXR in somatic cells of D. melanogaster and exhibited satisfactory interactions with the EcR.
Collapse
Affiliation(s)
- Mirley Alves Vasconcelos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| | - Priscila Capelari Orsolin
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas, MG, Brazil.
| | - Victor Constante Oliveira
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| | | | | | | | - Nilson Nicolau-Júnior
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| | - Ana Maria Bonetti
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
de Sousa FA, de Morais CR, Vieira JS, Maranho LS, Machado FL, Pereira S, Barbosa LC, Coelho HE, Campos CF, Bonetti AM. Genotoxicity and carcinogenicity of ivermectin and amoxicillin in vivo systems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103196. [PMID: 31152944 DOI: 10.1016/j.etap.2019.103196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/21/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Antiparasitic substances are chemicals used to control or kill endoparasites and ectoparasites. Based on the premise that Ivermectin (IVM) and Amoxicillin (AMX) are commonly considered in parasitic control in mammals, the present study aimed to evaluate the carcinogenic and genotoxic potential of different concentrations of IVM and AMX through the detection of epithelial tumor test in Drosophila melanogaster. Third-instar larvae descending from the cross between wts/TM3, Sb1 females and mwh/mwh males were treated with different concentrations of IVM (2.9, 5.8, 11.6 and 23.2 x 10-17 mM) or AMX (1.37, 2.74, 5.48 and 10.9 x 10-16mM). The results revealed that IVM increased the frequency of epithelial tumor in D. melanogaster considering all evaluated concentrations, while AMX showed no carcinogenic effect. Furthermore, the Micronucleus (MN) test in Tradescantia pallida was used to evaluate the genotoxic effect of IVM and AMX. T. pallida individuals were exposed for 8 hours at different concentrations of IVM (5.71, 11.42, 22.84 and 45.68 x 10-5mM) or AMX (5.13, 10.26, 20.52 and 41.05 x 10-3mM). Findings showed an increase in the frequency of micronuclei in T. pallida treated with 11.42, 22.84 and 45.68 x 10-5mM of IVM. We conclude that chronic exposure to IVM is directly associated with events resulting from genetic instability (genotoxicity and carcinogenicity). On the other hand, AMX was neither carcinogenic nor genotoxic for D. melanogaster and T. pallida.
Collapse
Affiliation(s)
- Francielle Aparecida de Sousa
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil.
| | - Jéssica Soares Vieira
- Department of Cell Biology, Carmelitana Foundation Mário Palmério, 38500-000, Monte Carmelo, Minas Gerais, Brazil
| | - Lavínia Sales Maranho
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Francielli Lara Machado
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Samanta Pereira
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Lilian Cristina Barbosa
- Department of Genetics, University Center of Cerrado Patrocínio, Avenida Líria Terezinha Lassi Capuano, 466, 38747-792, Patrocínio, Minas Gerais, Brazil
| | - Humberto Eustáquio Coelho
- Department of Animal Pathology, University of Uberaba, Avenida Nenê Sabino, 1801 - Bairro Universitário, 38055-500, Uberaba, Minas Gerais, Brazil
| | - Carlos Fernando Campos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
6
|
Oliveira VC, Constante SAR, Polloni L, Orsolin PC, Silva-Oliveira RG, Machado NM, de Oliveira-Júnior RJ, Nepomuceno JC. Protective effect of aspirin against mitomycin C-induced carcinogenicity, assessed by the test for detection of epithelial tumor clones (warts) in Drosophila melanogaster. Drug Chem Toxicol 2017; 41:330-337. [PMID: 29281929 DOI: 10.1080/01480545.2017.1415926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study assessed the protective effect of aspirin against carcinogenicity induced by mitomycin C (MMC) by the test for detection of warts/epithelial tumor clones in Drosophila melanogaster. Larvae were treated with different concentrations of aspirin alone (10, 20 or 40 mg/mL) or aspirin in association with MMC. MMC and ultrapure water were employed as the positive and negative control, respectively. Antioxidant activity was determined using the DPPH method. For performing cytotoxicity assay on HeLa cells, the aspirin concentrations used ranged from 200 mmol/L to 3,125 mmol/L. For assessment of apoptosis and necrosis, cells were incubated for 24 h with complete medium in the absence (control group) or presence of aspirin (12.5 mmol/L and 25 mmol/L). The results obtained in the assessment of the possible carcinogenic effects of aspirin at the three concentrations tested indicate no statistically significant increase in tumor frequency compared to the negative control. The anticarcinogenic activity assessment, where the larvae of D. melanogaster were previously induced to tumor formation by MMC and later treated with aspirin, showed a statistically significant reduction in the number of tumors compared to the positive control. Antioxidant activity across the three aspirin concentrations (10, 20 or 40 mg/mL) ranged from 20.81% to 26.5%. It was observed that aspirin reduced growth viability of HeLa cells in a concentration-dependent manner in comparison with the control. These results indicate that aspirin did not induce tumors in Drosophila and reduced MMC-induced carcinogenicity. The antioxidant activity and apoptosis induction appear to be the main mechanisms involved in reducing the frequency of tumors.
Collapse
Affiliation(s)
- Victor Constante Oliveira
- a Genetics and Biochemistry Institute , Federal University of Uberlandia , Uberlandia , Brazil.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | | | - Lorena Polloni
- c Laboratory of Animal Cytogenetics , Genetics and Biochemistry Institute, Federal University of Uberlândia , Uberlandia , Brazil
| | - Priscila Capelari Orsolin
- b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | | | - Nayane Moreira Machado
- b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | - Robson José de Oliveira-Júnior
- c Laboratory of Animal Cytogenetics , Genetics and Biochemistry Institute, Federal University of Uberlândia , Uberlandia , Brazil
| | - Júlio César Nepomuceno
- a Genetics and Biochemistry Institute , Federal University of Uberlandia , Uberlandia , Brazil.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| |
Collapse
|
7
|
Psichas A, Larraufie PF, Goldspink DA, Gribble FM, Reimann F. Chylomicrons stimulate incretin secretion in mouse and human cells. Diabetologia 2017; 60:2475-2485. [PMID: 28866808 PMCID: PMC5850988 DOI: 10.1007/s00125-017-4420-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Lipids are a potent stimulus for the secretion of glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic peptide (GIP). Traditionally, this effect was thought to involve the sensing of lipid digestion products by free fatty acid receptor 1 (FFA1) and G-protein coupled receptor 119 (GPR119) on the apical surface of enteroendocrine cells. However, recent evidence suggests that lipids may in fact be sensed basolaterally, and that fatty acid absorption and chylomicron synthesis may be a prerequisite for their stimulatory effect on gut peptide release. Therefore, we investigated the effect of chylomicrons on GLP-1 and GIP secretion in vitro. METHODS The effect of chylomicrons on incretin secretion was investigated using GLUTag cells and duodenal cultures of both murine and human origin. The role of lipoprotein lipase (LPL) and FFA1 in GLUTag cells was assessed by pharmacological inhibition and small (short) interfering RNA (siRNA)-mediated knockdown. The effect of chylomicrons on intracellular calcium concentration ([Ca2+]i) was determined by imaging GLUTag cells loaded with Fura-2. In the primary setting, the contributions of FFA1 and GPR119 were investigated using L cell-specific Gpr119 knockout cultures treated with the FFA1 antagonist GW1100. RESULTS Chylomicrons stimulated GLP-1 release from GLUTag cells, and both GLP-1 and GIP secretion from human and murine duodenal cultures. Chylomicron-triggered GLP-1 secretion from GLUTag cells was largely abolished following lipase inhibition with orlistat or siRNA-mediated knockdown of Lpl. In GLUTag cells, both GW1100 and siRNA-mediated Ffar1 knockdown reduced GLP-1 secretion in response to chylomicrons, and, consistent with FFA1 Gq-coupling, chylomicrons triggered an increase in [Ca2+]i. However, LPL and FFA1 inhibition had no significant effect on chylomicron-mediated incretin secretion in murine cultures. Furthermore, the loss of GPR119 had no impact on GLP-1 secretion in response to chylomicrons, even in the presence of GW1100. CONCLUSIONS/INTERPRETATION Chylomicrons stimulate incretin hormone secretion from GLUTag cells as well as from human and murine duodenal cultures. In GLUTag cells, the molecular pathway was found to involve LPL-mediated lipolysis, leading to the release of lipid species that activated FFA1 and elevated intracellular calcium.
Collapse
Affiliation(s)
- Arianna Psichas
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Pierre F Larraufie
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Deborah A Goldspink
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Frank Reimann
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
8
|
de Morais CR, Carvalho SM, Carvalho Naves MP, Araujo G, de Rezende AAA, Bonetti AM, Spanó MA. Mutagenic, recombinogenic and carcinogenic potential of thiamethoxam insecticide and formulated product in somatic cells of Drosophila melanogaster. CHEMOSPHERE 2017; 187:163-172. [PMID: 28846972 DOI: 10.1016/j.chemosphere.2017.08.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Thiamethoxam (TMX) belongs to a class of neuro-active insecticides referred as neonicotinoids, while actara® (AC) is one of the most popular TMX-based products in Brazil. The aim of this study was to evaluate the mutagenic, recombinogenic and carcinogenic potential of TMX and AC insecticides. The mutagenic and recombinogenic effect of TMX and AC were evaluated in vivo by the Somatic Mutation and Recombination Test (SMART) while carcinogenic effects were evaluated through the Test for Detection of Epithelial Tumor Clones (wts test), both in somatic cells of Drosophila melanogaster. In the SMART, third instar larvae from standard (ST) and high bioactivation (HB) crosses were treated with different concentrations of TMX and AC (2.4; 4.8; 9.7 × 10-4 mM and 1.9 × 10-3 mM). The results revealed mutagenic effects at the highest concentrations tested in the HB cross. In the test for the detection of epithelial tumor, third instar larvae resulting from the cross between wts/TM3, Sb1 virgin females and mwh/mwh males were treated with the same concentrations of TMX and AC used in the SMART. No carcinogenic effect was observed at any of the concentrations tested. In this work, the inhibition of the mechanism of repair by homologous recombination was observed in flies exposed to 9.7 × 10-4 and 1.9 × 10-3 mM of AC. In conclusion, TMX and AC demonstrated to be a promutagen in the highest concentrations tested.
Collapse
Affiliation(s)
- Cássio Resende de Morais
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Stephan Malfitano Carvalho
- Department of Entomology, Federal University of Lavras, PO Box 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Maria Paula Carvalho Naves
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Galber Araujo
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil; Department of Molecular Biology, University of Salzburg, 5020, Salzburg, Austria
| | - Alexandre Azenha Alves de Rezende
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Ana Maria Bonetti
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Mário Antônio Spanó
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Saturnino RS, Machado NM, Lopes JC, Nepomuceno JC. Assessment of the mutagenic, recombinogenic, and carcinogenic potential of amphotericin B in somatic cells of Drosophila melanogaster. Drug Chem Toxicol 2017; 41:9-15. [PMID: 28274136 DOI: 10.1080/01480545.2016.1188302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amphotericin B (AmB) is an antifungal antibiotic extracted from Streptomyces nodosus. Its fungicidal activity depends primarily on its binding to the sterol group that is present in fungal membranes. In view of the toxicity of this drug, the purpose of this study was to evaluate its mutagenic, carcinogenic, and recombinogenic activity, based on the wing somatic mutation and recombination test (SMART) and the epithelial tumor detection test (wts) applied to Drosophila melanogaster. Larvae were chronically treated with different concentrations of AmB (0.01, 0.02, and 0.04 mg/mL). The results revealed that AmB is a promutagen exhibiting increase in the number of spots on individuals from high bioactivation (HB) cross with a high level of cytochrome P450. The results also indicate that the main genotoxic event induced by AmB is recombinogenicity. Homologous recombination can act as a determinant at different stages of carcinogenesis. For verification of carcinogenic potential of this compound, larvae from the wts/mwh and wts/ORR, flr3 were treated with the same three AmB concentrations used in the SMART assay. The results did not provide evidence that AmB has carcinogenic potential in wts/mwh individuals. However, individuals from wts/ORR, flr3 developed tumors at the highest concentration tested.
Collapse
Affiliation(s)
- Rosiane Soares Saturnino
- a Institute of Genetics and Biochemistry, Federal University of Uberlândia , Uberlândia , Brazil and.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | - Nayane Moreira Machado
- a Institute of Genetics and Biochemistry, Federal University of Uberlândia , Uberlândia , Brazil and.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | - Jeyson Cesary Lopes
- a Institute of Genetics and Biochemistry, Federal University of Uberlândia , Uberlândia , Brazil and.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| | - Júlio César Nepomuceno
- a Institute of Genetics and Biochemistry, Federal University of Uberlândia , Uberlândia , Brazil and.,b Laboratory of Cytogenetics and Mutagenesis , University Center of Patos de Minas , Patos de Minas , Brazil
| |
Collapse
|
10
|
Vasconcelos MA, Orsolin PC, Silva-Oliveira RG, Nepomuceno JC, Spanó MA. Assessment of the carcinogenic potential of high intense-sweeteners through the test for detection of epithelial tumor clones (warts) in Drosophila melanogaster. Food Chem Toxicol 2017; 101:1-7. [DOI: 10.1016/j.fct.2016.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/26/2022]
|
11
|
Chakrabarti M, Ghosh I, Jana A, Ghosh M, Mukherjee A. Genotoxicity of antiobesity drug orlistat and effect of caffeine intervention: an in vitro study. Drug Chem Toxicol 2016; 40:339-343. [PMID: 27707005 DOI: 10.1080/01480545.2016.1236128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Obesity is a major global health problem associated with various adverse effects. Pharmacological interventions are often necessary for the management of obesity. Orlistat is an FDA-approved antiobesity drug which is a potent inhibitor of intestinal lipases. OBJECTIVE In the current study, orlistat was evaluated for its genotoxic potential in human lymphocyte cells in vitro and was compared with that of another antiobesity drug sibutramine, presently withdrawn from market due its undesirable health effects. Caffeine intake may be an additional burden in people using anorectic drugs, therefore, further work is needed to be carried out to evaluate the possible effects of caffeine on orlistat-induced DNA damage. MATERIALS AND METHODS Human lymphocytes were exposed to orlistat (250, 500 and 1000 μg/ml), sibutramine (250, 500 and 1000 μg/ml) and caffeine (25, 50, 75, 100, 125 and 150 μg/ml) to assess their genotoxicity by comet assay in vitro. In addition, lymphocytes were co-incubated with caffeine (50, 75 and 100 μg/ml) and a single concentration of orlistat (250 μg/ml). RESULTS Orlistat and sibutramine were genotoxic at all concentrations tested, sibutramine being more genotoxic. Caffeine was found to be genotoxic at concentrations 125 μg/ml and above. Co-treatment of orlistat with non-genotoxic concentrations (50, 75 and 100 μg/ml) of caffeine lead to a decrease in DNA damage. DISCUSSION AND CONCLUSION Orlistat can induce DNA damage in human lymphocytes in vitro and caffeine was found to reduce orlistat-induced genotoxicity.
Collapse
Affiliation(s)
- Manoswini Chakrabarti
- a Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta , Kolkata , India
| | - Ilika Ghosh
- a Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta , Kolkata , India
| | - Aditi Jana
- a Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta , Kolkata , India
| | - Manosij Ghosh
- a Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta , Kolkata , India
| | - Anita Mukherjee
- a Cell Biology and Genetic Toxicology Laboratory, Centre of Advance Study, Department of Botany, University of Calcutta , Kolkata , India
| |
Collapse
|
12
|
Silva-Oliveira RG, Orsolin PC, Nepomuceno JC. Modulating effect of losartan potassium on the mutagenicity and recombinogenicity of doxorubicin in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2016; 95:211-8. [PMID: 27394655 DOI: 10.1016/j.fct.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Losartan potassium is an antihypertensive drug in the angiotensin II receptor antagonist (ARA) class. Some studies claim that, in addition to regulating blood pressure, this class of drug has anticancer properties. The objective of this study was to evaluate the genotoxic and antigenotoxic potential of losartan potassium using the SMART (Somatic Mutation and Recombination Test) assay on the somatic cells of Drosophila melanogaster, as well as the possible modulating effects of this drug, when associated with doxorubicin (DXR). Third instar larvae, descendents of standard and high bioactivation (ST and HB) crosses, were chronically treated with different concentrations of losartan potassium (0.25; 0.5; 1; 2; and 4 mM) alone or in association (co-treatment) with doxorubicin (DXR 0.125 mg/mL). The results showed an absence of a mutagenic effect of losartan potassium. In the co-treatment of losartan with DXR, the results showed that losartan is capable of reducing the number of mutant spots induced by DXR without altering the recombinogenic effect of the chemotherapeutic agent. Antiproliferative action appears to be the main mechanism involved in reducing the frequency of mutant spots and consequent modulation of alterations induced by DXR, although this parameter has not been directly assessed in this study.
Collapse
Affiliation(s)
- R G Silva-Oliveira
- Universidade Federal de Uberlândia, Institute of Genetics and Biochemistry, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Centro Universitário de Patos de Minas, Laboratory for Cytogenetics and Mutagenesis, Patos de Minas, Minas Gerais, Brazil.
| | - P C Orsolin
- Universidade Federal de Uberlândia, Institute of Genetics and Biochemistry, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Centro Universitário de Patos de Minas, Laboratory for Cytogenetics and Mutagenesis, Patos de Minas, Minas Gerais, Brazil
| | - J C Nepomuceno
- Universidade Federal de Uberlândia, Institute of Genetics and Biochemistry, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Centro Universitário de Patos de Minas, Laboratory for Cytogenetics and Mutagenesis, Patos de Minas, Minas Gerais, Brazil
| |
Collapse
|
13
|
Modulating effect of simvastatin on the DNA damage induced by doxorubicin in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2016; 90:10-7. [DOI: 10.1016/j.fct.2016.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 11/23/2022]
|
14
|
Cioccoloni G, Bonmassar L, Pagani E, Caporali S, Fuggetta MP, Bonmassar E, D'Atri S, Aquino A. Influence of fatty acid synthase inhibitor orlistat on the DNA repair enzyme O6-methylguanine-DNA methyltransferase in human normal or malignant cells in vitro. Int J Oncol 2015; 47:764-72. [PMID: 26035182 DOI: 10.3892/ijo.2015.3025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 11/05/2022] Open
Abstract
Tetrahydrolipstatin (orlistat), an inhibitor of lipases and fatty acid synthase, is used orally for long-term treatment of obesity. Although the drug possesses striking antitumor activities in vitro against human cancer cells and in vitro and in vivo against animal tumors, it also induces precancerous lesions in rat colon. Therefore, we tested the in vitro effect of orlistat on the expression of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme that plays an essential role in the control of mutagenesis and carcinogenesis. Western blot analysis demonstrated that 2-day continuous exposure to 40 µM orlistat did not affect MGMT levels in a human melanoma cell line, but downregulated the repair protein by 30-70% in human peripheral blood mononuclear cells, in two leukemia and two colon cancer cell lines. On the other hand, orlistat did not alter noticeably MGMT mRNA expression. Differently from lomeguatrib (a false substrate, strong inhibitor of MGMT) orlistat did not reduce substantially MGMT function after 2-h exposure of target cells to the agent, suggesting that this drug is not a competitive inhibitor of the repair protein. Combined treatment with orlistat and lomeguatrib showed additive reduction of MGMT levels. More importantly, orlistat-mediated downregulation of MGMT protein expression was markedly amplified when the drug was combined with a DNA methylating agent endowed with carcinogenic properties such as temozolomide. In conclusion, even if orlistat is scarcely absorbed by oral route, it is possible that this drug could reduce local MGMT-mediated protection against DNA damage provoked by DNA methylating compounds on gastrointestinal tract epithelial cells, thus favoring chemical carcinogenesis.
Collapse
Affiliation(s)
- Giorgia Cioccoloni
- Department of Systems Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | - Elena Pagani
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), I-00133 Rome, Italy
| | - Enzo Bonmassar
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), I-00133 Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, I-00167 Rome, Italy
| | - Angelo Aquino
- Department of Systems Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| |
Collapse
|
15
|
Orsolin PC, Silva-Oliveira RG, Nepomuceno JC. Modulating effect of synthetic statins against damage induced by doxorubicin in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2015; 81:111-119. [PMID: 25846503 DOI: 10.1016/j.fct.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/25/2022]
Abstract
The competitive inhibitors of HMG-CoA reductase, popularly known as statins, exert pleiotropic effects, which result from the ability of statins to inhibit the synthesis of isoprenoids, which are fundamental for the functioning of proteins responsible for intracellular signaling. Some recent studies suggest an important role associated with the use of antineoplastic atorvastatin and rosuvastatin, the statins most widely used today. In this study, the Drosophila wing spot test was used to evaluate possible protective effects of atorvastatin and rosuvastatin against damage induced by DXR. Larvae were chronically treated with negative control (ethanol 5%), positive control (DXR 0.125 mg/mL) and five different concentrations of atorvastatin and rosuvastatin. The results demonstrated absence of a mutagenic effect for the two statins tested. The analysis of the descendants co-treated with DXR and atorvastatin/rosuvastatin revealed a modulatory effect of these statins on damage induced by DXR. This effect was verified in all concentrations tested in the descendants of the ST and HB crosses treated with rosuvastatin, and only in descendants of the HB cross treated with atorvastatin. Induction of apoptosis and antioxidant activity appear to be the main mechanisms involved in reducing the frequency of mutant spots and consequent modulation of the damage induced by DXR.
Collapse
Affiliation(s)
- P C Orsolin
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil
| | - R G Silva-Oliveira
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil
| | - J C Nepomuceno
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Laboratório de Citogenética e Mutagênese, Centro Universitário de Patos de Minas, Patos de Minas, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Lopes JC, Machado NM, Saturnino RS, Nepomuceno JC. Recombinogenic activity of Pantoprazole(®) in somatic cells of Drosophila melanogaster. Genet Mol Biol 2014; 38:101-6. [PMID: 25983631 PMCID: PMC4415568 DOI: 10.1590/s1415-475738120140154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022] Open
Abstract
Pantoprazole® is one of the leading proton pump inhibitors (PPIs) used in
the treatment of a variety of diseases related to the upper gastrointestinal tract.
However, studies have shown an increased risk of developing gastric cancer,
intestinal metaplasia and hyperplasia of endocrine cells with prolonged use. In the
present study, the somatic mutation and recombination test (SMART) was employed to
determine the mutagenic effects of Pantoprazole on Drosophila
melanogaster. Repeated treatments with Pantoprazole were performed on
72-hour larvae of the standard (ST) and high bioactivation (HB) crosses at
concentrations of 2.5, 5.0, and 10.0 μM. In addition, doxorubicin (DXR) was
administered at 0.4 mM, as a positive control. When administered to ST descendants,
total number of spots were statistically significant at 2.5 and 5.0 μM
concentrations. For HB descendants, a significant increase in the total number of
spots was observed among the marked transheterozygous (MH) flies. Through analysis of
balancer heterozygous (BH) descendants, recombinogenic effects were observed at all
concentrations in descendants of the HB cross. In view of these experimental
conditions and results, it was concluded that Pantoprazole is associated with
recombinogenic effects in Drosophila melanogaster.
Collapse
Affiliation(s)
- Jeyson Césary Lopes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Nayane Moreira Machado
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Rosiane Soares Saturnino
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Júlio César Nepomuceno
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil . ; Laboratório de Citogenética e Mutagênese, Centro Universitário de Patos de Minas, Patos de Minas, MG, Brazil
| |
Collapse
|
17
|
Machado NM, Lopes JC, Saturnino RS, Fagan EB, Nepomuceno JC. Lack of mutagenic effect by multi-walled functionalized carbon nanotubes in the somatic cells of Drosophila melanogaster. Food Chem Toxicol 2013; 62:355-60. [PMID: 23994091 DOI: 10.1016/j.fct.2013.08.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/04/2023]
Abstract
Carbon nanotubes (CNTs) are formed by rolling up a single graphite sheet into a tube. Among the different types of CNTs, the multi-walled carbon nanotubes (MWCNTs) comprise a set of concentric nanotubes with perfect structures. Several uses for MWCNTs have been suggested to be included in biological applications such as manufacturing of biosensors, carriers of drugs. However, before these materials can be put on the market, it is necessary to know their genotoxic effects. Thus, this study aims to evaluate the mutagenicity of multi-walled carbon nanotubes (MWCNTs) functionalized in somatic cells of Drosophila melanogaster, using the somatic mutation and recombination test (SMART). This assay detects the loss of heterozygosity of marker genes expressed phenotypically on the wings of the fly. Larvae of three days were used, resulting from ST cross, with basal levels of the cytochrome P450 and larvae of high metabolic bioactivity capacity (HB cross). They were treated with different concentrations of MWCNTs functionalized. The MH descendants, analyzed in both ST and HB crosses, had no significant effects on the frequency of mutant. Based on the results and on the experimental conditions mentioned in this study, it was concluded that MWCNTs were not mutagenic in D. melanogaster.
Collapse
Affiliation(s)
- N M Machado
- Universidade Federal de Uberlândia, Instituto de Genética e Bioquímica, Bloco 2E, Campus Umuarama, Uberlândia, Minas Gerais, Brazil; Centro Universitário de Patos de Minas, Laboratório de Citogenética e Mutagênese, Patos de Minas, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|