1
|
An P, Li L, Huang P, Zheng Y, Jin Z, Korma SA, Ren N, Zhang N. Lacticaseibacillus rhamnosus C1 effectively inhibits Penicillium roqueforti: Effects of antimycotic culture supernatant on toxin synthesis and corresponding gene expression. Front Microbiol 2023; 13:1076511. [PMID: 36777030 PMCID: PMC9909597 DOI: 10.3389/fmicb.2022.1076511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, consumers are increasingly concerned about the contamination of food by molds and the addition of chemical preservatives. As natural and beneficial bacteria, probiotics are a prospective alternative in food conservation because of their antimycotic activities, although the mechanism has not been explained fully at the level of metabolites. This study aimed at investigating the antifungal activities and their mechanisms of five potential probiotic strains (Lacticaseibacillus rhamnosus C1, Lacticaseibacillus casei M8, Lactobacillus amylolyticus L6, Schleiferilactobacillus harbinensis M1, and Limosilactobacillus fermentum M4) against Penicillium roqueforti, the common type of mold growth on the bread. Results showed that C1 emerged the strongest effectiveness at blocking mycelium growth, damaging the morphology of hyphae and microconidia, decreasing DNA content and interfering in the synthesis of the fungal toxins patulin, roquefortine C and PR-toxin, as well as downregulating the expression of key genes associated with the toxin biosynthesis pathways. Further metabonomic investigation revealed that protocatechuic acid with the minimum inhibitory concentration of 0.40 mg/mL, may be most likely responsible for positively correlated with the antimycotic effects of C1. Thus, C1 is expected to be both a potentially greatly efficient and environmental antimycotic for controlling P. roqueforti contamination in foods.
Collapse
Affiliation(s)
- Peipei An
- Department of Food Science, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Li Li
- Department of Food Science, School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Innovation and Research Platforms of Life and Health, China-Singapore International Joint Research Institute, Guangzhou, China,*Correspondence: Li Li, ✉
| | - Pei Huang
- Department of Data Science, School of Software Engineering, South China University of Technology, Guangzhou, China
| | - Yin Zheng
- Department of Food Science, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zekun Jin
- Department of Food Science, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sameh A. Korma
- Department of Food Science, School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
| | - Namei Ren
- Department of Food Science, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Nan Zhang
- Department of Food Science, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Walia S, Kamal R, Kanwar SS, Dhawan DK. Hepato-protective role of chemo-preventive probiotics during DMH-induced CRC in rats. J Biochem Mol Toxicol 2021; 35:e22788. [PMID: 33866645 DOI: 10.1002/jbt.22788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
The aim of the study was to assess the hepatotoxicity, and therefore pharmacological safety of probiotics Lactobacillus plantarum (AdF10) and Lactobacillus rhamnosus GG (LGG) for potential use in colorectal cancer (CRC) prevention. Thirty-six female Sprague Dawley (SD) rats were divided into six groups: normal control, AdF10-treated, LGG-treated, 1,2-Dimethyl hydrazine (DMH)-treated, AdF10 + DMH-treated, and LGG + DMH-treated groups. Antioxidant enzyme activity, lipid proxidation, and liver function were assessed. Administration of probiotics in both AdF10 + DMH-treated and LGG + DMH-treated groups downregulated DMH induced a rise in lipid peroxide (LPO), glutathione reductase (GR) activity, and increased the diminished glutathione reduced (GSH) content and catalase (CAT), glutathione-transferase (GST), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. DMH-treated rats receiving the probiotic treatment suffered less liver damage when compared with rats that did not receive probiotics. In conclusion, the study identifies the use of probiotics as an effective and nontoxic chemo-preventive interventional in CRC.
Collapse
Affiliation(s)
- Sohini Walia
- Department of Microbiology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| | - Rozy Kamal
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarbjit S Kanwar
- Department of Microbiology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| | | |
Collapse
|
3
|
Salim A, Nadri S, Hosseini MJ, Rokni-Zadeh H, Mohseni M. Protective effect of probiotic Lactobacillus acidophilus against the toxicity of beauvericin mycotoxin on the Caco-2 cell line. Toxicon 2020; 185:184-187. [PMID: 32673610 DOI: 10.1016/j.toxicon.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
The present study evaluated the protective effect of Lactobacillus acidophilus against the toxicity of the Beauvericin on the Caco-2 cell line. After culturing Caco-2 cells and applying different concentrations of Beauvericin and L. acidophilus individually and in combination, cell viability was assessed by enzyme-linked immunosorbent assay at different times. The results indicate the potential risk of Beauvericin to human health and the interventional role of L. acidophilus, which improved cell viability in the presence of Beauvericin.
Collapse
Affiliation(s)
- Ahdiye Salim
- Department of Food Safety and Hygiene, School of Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir-Jamal Hosseini
- Department of Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hassan Rokni-Zadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehran Mohseni
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
4
|
Lin R, Sun Y, Mu P, Zheng T, Mu H, Deng F, Deng Y, Wen J. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice. Biochem Pharmacol 2020; 175:113868. [PMID: 32088259 DOI: 10.1016/j.bcp.2020.113868] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/18/2020] [Indexed: 01/01/2023]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin in grains, and DON exposure causes gastrointestinal inflammation and systemic immunosuppression. The immunosuppression caused by DON has raised serious concerns about whether it is safe to use probiotics in immunocompromised hosts. Gut microbiota remodeling by Lactobacillus is a potential effective strategy to prevent DON exposure. The athymic nude mice were chose as the model of immunocompromised animals. We tested the effect of the probiotic Lactobacillus rhamnosus GG (LGG) or Lactobacillus acidophilus (LA) supplementation on host protection against DON exposure and the underlying mechanisms in nude mice. DON exposure induced endoplasmic reticulum (ER) stress and impaired intestinal barrier function and microbiota, which were relieved by LGG supplementation but not LA supplementation. LGG supplementation significantly enhanced the intestinal barrier function, increased the body weight and the survival rate in nude mice that exposed to DON for two weeks. Furthermore, LGG supplementation modulated the gut microbiota by increasing the abundance of Bacteroidetes and the levels of the butyrate-producing genes But and Buk to promote butyrate production. Butyrate inhibited the IRE1α/XBP1 signaling pathway to reduce DON-induced intestine injury. In conclusion, LGG supplementation modulated the gut microbiota to promote butyrate production, protecting against DON exposure in nude mice. Both LGG and butyrate show promise for use in protecting against DON exposure.
Collapse
Affiliation(s)
- Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Ting Zheng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Haibin Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Fengru Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
5
|
Huang W, Chang J, Wang P, Liu C, Yin Q, Song A, Gao T, Dang X, Lu F. Effect of Compound Probiotics and Mycotoxin Degradation Enzymes on Alleviating Cytotoxicity of Swine Jejunal Epithelial Cells Induced by Aflatoxin B₁ and Zearalenone. Toxins (Basel) 2019; 11:toxins11010012. [PMID: 30609651 PMCID: PMC6356961 DOI: 10.3390/toxins11010012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects of AFB1 and ZEA on swine jejunal epithelial cells (IPEC-J2), the combination of a cell-free supernatant of compound probiotics (CFSCP) with mycotoxin degradation enzymes (MDEs) from Aspergillus oryzae was tested. The results demonstrated that coexistence of AFB1 and ZEA had synergetic toxic effects on cell viability. The cell viability was decreased with mycotoxin concentrations increasing, but increased with incubation time extension. The necrotic cell rates were increased when 40 µg/L AFB1 and/or 500 µg/L ZEA were added, but the addition of CFSCP + MDE suppressed the necrotic effects of AFB1 + ZEA. The viable cell rates were decreased when AFB1 and/or ZEA were added: However, the addition of CFSCP + MDE recovered them. The relative mRNA abundances of Bcl-2, occludin, and ZO-1 genes were significantly upregulated, while Bax, caspase-3, GLUT2, ASCT2, PepT1, and IL6 genes were significantly downregulated by CFSCP + MDE addition, compared to the groups containing 40 µg/L AFB1 and 500 µg/L ZEA. This research provided an effective strategy in alleviating mycotoxin cytotoxicity and keeping normal intestinal cell structure and animal health.
Collapse
Affiliation(s)
- Weiwei Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Andong Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tianzeng Gao
- Henan Guangan Biotechnology Co., Ltd., Zhengzhou 450001, China.
| | - Xiaowei Dang
- Henan Delin Biological Product Co. Ltd., Xinxiang 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co. Ltd., Zhoukou 466000, China.
| |
Collapse
|
6
|
Ikoma T, Tsuchiya Y, Asai T, Okano K, Ito N, Endoh K, Yamamoto M, Nakamura K. Ochratoxin A Contamination of Red Chili Peppers from Chile, Bolivia and Peru, Countries with a High Incidence of Gallbladder Cancer. Asian Pac J Cancer Prev 2016; 16:5987-91. [PMID: 26320485 DOI: 10.7314/apjcp.2015.16.14.5987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Our previous study detected aflatoxins in red chili peppers from Chile, Bolivia, and Peru, each of which have a high incidence of gallbladder cancer (GBC). Since the aflatoxin B1 concentration was not so high in these peppers, it is important to clarify the presence of other mycotoxins. Here we attempted to determine any associations between the concentrations of aflatoxins and ochratoxin A (OTA) in red chili peppers, and the corresponding GBC incidences. We collected red chili peppers from three areas in Peru: Trujillo (a high GBC incidence area), Cusco (an intermediate GBC incidence area), and Lima (a low GBC incidence rate), and from Chile and Bolivia. Aflatoxins and OTA were extracted with organic solvents. The concentrations of aflatoxins B1, B2, G1, and G2, and OTA were measured by high-performance liquid chromatography. The values obtained were compared with the incidence of GBC in each area or country. All of the red chili peppers from the three areas showed contamination with aflatoxins below the Commission of the European Communities (EC) recommended limits (5 μg/kg), but the OTA contamination of two samples was above the EC recommended limit (15 μg/kg). The mean concentrations of OTA in the peppers from Chile (mean 355 μg/kg, range <5-1,059 μg/kg) and Bolivia (mean 207 μg/kg, range 0.8-628 μg/kg), which has a high incidence of GBC, were higher than that in Peru (14 μg/kg, range <5-47 μg/kg), which has an intermediate GBC incidence. The OTA contamination in the red chili peppers from Chile, Bolivia, and Peru was stronger than that of aflatoxins. Our data suggest that OTA in red chili peppers may be associated with the development of GBC.
Collapse
|
7
|
Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 2015; 69:187-203. [PMID: 26578541 PMCID: PMC4789713 DOI: 10.1136/jclinpath-2015-202976] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022]
Abstract
The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword ‘Lactobacillus’. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects.
Collapse
Affiliation(s)
- Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, "G. d'Annunzio" University, Chieti, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Maria Aponte
- Department of Agriculture, University of Naples "Federico II", Portici, Naples, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Dubey V, Ghosh AR, Bishayee K, Khuda-Bukhsh AR. Probiotic Pediococcus pentosaceus strain GS4 alleviates azoxymethane-induced toxicity in mice. Nutr Res 2015; 35:921-929. [PMID: 26319614 DOI: 10.1016/j.nutres.2015.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022]
Abstract
Probiotic treatment has been gaining attention due to its remarkable effects in alleviating toxicity and carcinogenesis. The novel strain Pediococcus pentosaceus GS4 has been reported for probiotic, survivability in simulated gastrointestinal fluid, and antioxidative and biohydrogenation properties. Therefore, we hypothesize that this specific strain might be able to assuage the effect of azoxymethane (AOM)-induced toxicity in mice. Twenty-eight Swiss albino mice were divided into 4 groups and were studied for 32 weeks. Azoxymethane (10 mg/kg body weight) was administered intraperitoneally twice (0th and 14th days), and probiotic GS4 (1.1 × 10(9) colony-forming unit/mL) was given orally for the respective groups. Mice who served as the normal control received only normal saline. GS4-intervened AOM-induced mice showed marked improvement at the histopathologic level, in the liver and kidney. Moreover, probiotic GS4 intervention in AOM-induced mice exhibited a significant reduction in the liver function biomarker when compared with the AOM-induced mice. Probiotic GS4 intervention reduced the intestinal structural deformities as evident from the elevated brush border membrane-associated disaccharidases (sucrase, lactase) and intestinal alkaline phosphatase activities, which were found disrupted by AOM intoxication. Fecal bacterial load was found to be reduced in AOM-induced mice which were subsequently replenished by the probiotic GS4 intervention as apparent from the enhanced fecal bacterial load. There were no adverse effects observed in the probiotic control group. Conclusively, novel probiotic strain GS4 exhibited safe and beneficial effects against the toxicity threats posed by AOM. Thus, GS4 could be considered as a potential food supplement/additive for therapeutic purposes in gastrointestinal disorders related to inflammation and cancer.
Collapse
Affiliation(s)
- Vinay Dubey
- Centre for Infectious Diseases & Control, School of Biosciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
| | - Asit R Ghosh
- Centre for Infectious Diseases & Control, School of Biosciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India.
| | - Kausik Bishayee
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
| | - Anisur R Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
| |
Collapse
|
9
|
Cariddi LN, Sabini MC, Escobar FM, Montironi I, Mañas F, Iglesias D, Comini LR, Sabini LI, Dalcero AM. Polyphenols as possible bioprotectors against cytotoxicity and DNA damage induced by ochratoxin A. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1008-1018. [PMID: 25867686 DOI: 10.1016/j.etap.2015.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
The present study aimed to investigate the protective effects of luteolin (L), chlorogenic acid (ChlA) and caffeic acid (CafA) against cyto-genotoxic effects caused by OTA. Vero cells and rat lymphocytes were used and viability was measured by neutral red uptake, MTT and trypan blue dye exclusion method. L (50 and 100μg/mL), ChlA (100 and 200μg/mL) and CafA (10-50μg/mL) reduced the damage induced by OTA (10μg/mL) on both cells type shown a good protective effect. The comet and micronucleus tests in Balb/c mice were performed. ChlA (10mg/kg bw) reduced OTA (0.85mg/kg bw)-induced DNA damage on blood and bone marrow cells, CafA (10mg/kg bw) showed protective effect only in blood cells and luteolin (2.5mg/kg bw) failed to protect DNA integrity on cells. In conclusion, polyphenols tested reduced the toxicity caused by OTA on different target cells with good protective effect, being ChlA the compound that showed the best effects.
Collapse
Affiliation(s)
- L N Cariddi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina.
| | - M C Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| | - F M Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| | - I Montironi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - F Mañas
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - D Iglesias
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - L R Comini
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina; Farmacognosia, Departamento de Farmacia, Universidad Nacional de Córdoba (IMBIV-CONICET), Ciudad Universitaria, Córdoba CP 5000, Argentina
| | - L I Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - A M Dalcero
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| |
Collapse
|
10
|
|
11
|
Guo M, Huang K, Chen S, Qi X, He X, Cheng WH, Luo Y, Xia K, Xu W. Combination of metagenomics and culture-based methods to study the interaction between ochratoxin a and gut microbiota. Toxicol Sci 2014; 141:314-23. [PMID: 24973096 PMCID: PMC4833112 DOI: 10.1093/toxsci/kfu128] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota represent an important bridge between environmental substances and host metabolism. Here we reported a comprehensive study of gut microbiota interaction with ochratoxin A (OTA), a major food-contaminating mycotoxin, using the combination of metagenomics and culture-based methods. Rats were given OTA (0, 70, or 210 μg/kg body weight) by gavage and fecal samples were collected at day 0 and day 28. Bacterial genomic DNA was extracted from the fecal samples and both 16S rRNA and shotgun sequencing (two main methods of metagenomics) were performed. The results indicated OTA treatment decreased the within-subject diversity of the gut microbiota, and the relative abundance of Lactobacillus increased considerably. Changes in functional genes of gut microbiota including signal transduction, carbohydrate transport, transposase, amino acid transport system, and mismatch repair were observed. To further understand the biological sense of increased Lactobacillus, Lactobacillus selective medium was used to isolate Lactobacillus species from fecal samples, and a strain with 99.8% 16S rRNA similarity with Lactobacillus plantarum strain PFK2 was obtained. Thin-layer chromatography showed that this strain could absorb but not degrade OTA, which was in agreement with the result in metagenomics that no genes related to OTA degradation increased. In conclusion, combination of metagenomics and culture-based methods can be a new strategy to study intestinal toxicity of toxins and find applicable bacterial strains for detoxification. When it comes to OTA, this kind of mycotoxin can cause compositional and functional changes of gut microbiota, and Lactobacillus are key genus to detoxify OTA in vivo.
Collapse
Affiliation(s)
- Mingzhang Guo
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Siyuan Chen
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Xiaozhe Qi
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Xiaoyun He
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, Mississippi State, Mississippi 39762
| | - Yunbo Luo
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Kai Xia
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| |
Collapse
|
12
|
Juarez GE, Villena J, Salva S, de Valdez GF, Rodriguez AV. Lactobacillus reuteri CRL1101 beneficially modulate lipopolysaccharide-mediated inflammatory response in a mouse model of endotoxic shock. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|