1
|
Shaikh S, Lee EJ, Ahmad K, Choi I. Therapeutic potential and action mechanisms of licochalcone B: a mini review. Front Mol Biosci 2024; 11:1440132. [PMID: 39021879 PMCID: PMC11251949 DOI: 10.3389/fmolb.2024.1440132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Licochalcone B (LicB), a chalcone derived from Glycyrrhiza uralensis and Glycyrrhiza glabra, has received considerable attention due to its diverse pharmacological properties. Accumulated data indicates that LicB has pharmacological effects that include anti-cancer, hepatoprotective, anti-inflammatory, and neuroprotective properties. The action mechanism of LicB has been linked to several molecular targets, such as phosphoinositide 3-kinase/Akt/mammalian target of rapamycin, p53, nuclear factor-κB, and p38, and the involvements of caspases, apoptosis, mitogen-activated protein kinase-associated inflammatory pathways, and anti-inflammatory nuclear factor erythroid 2-related factor 2 signaling pathways highlight the multifaceted therapeutic potential of LicB. This review systematically updates recent findings regarding the pharmacological effects of LicB, and the mechanistic pathways involved, and highlights the potential use of LicB as a promising lead compound for drug discovery.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
3
|
Kwak AW, Kim WK, Lee SO, Yoon G, Cho SS, Kim KT, Lee MH, Choi YH, Lee JY, Park JW, Shim JH. Licochalcone B Induces ROS-Dependent Apoptosis in Oxaliplatin-Resistant Colorectal Cancer Cells via p38/JNK MAPK Signaling. Antioxidants (Basel) 2023; 12:antiox12030656. [PMID: 36978904 PMCID: PMC10045364 DOI: 10.3390/antiox12030656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Licochalcone B (LCB) exhibits anticancer activity in oral cancer, lung cancer, and hepatocellular carcinoma cells. However, little is known about its antitumor mechanisms in human oxaliplatin-sensitive and -resistant colorectal cancer (CRC) cells. The purpose of the present study was to investigate the antitumor potential of LCB against human colorectal cancer in vitro and analyze its molecular mechanism of action. The viability of CRC cell lines was evaluated using the MTT assay. Flow cytometric analyses were performed to investigate the effects of LCB on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. The results demonstrated that LCB induced a reduction in cell viability, apoptosis, G2/M cell cycle arrest, ROS generation, MMP depolarization, activation of multi-caspase, and JNK/p38 MAPK. However, p38 (SB203580) and JNK (SP600125) inhibitors prevented the LCB-induced reduction in cell viability. The ROS scavenger N-acetylcysteine (NAC) inhibited LCB-induced reduction in cell viability, apoptosis, cell cycle arrest, ROS generation, MMP depolarization, and multi-caspase and JNK/p38 MAPK activities. Taken together, LCB has a potential therapeutic effect against CRC cells through the ROS-mediated JNK/p38 MAPK signaling pathway. Therefore, we expect LCB to have promising potential as an anticancer therapeutic and prophylactic agent.
Collapse
Affiliation(s)
- Ah-Won Kwak
- Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Woo-Keun Kim
- Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Jin-Young Lee
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Correspondence: (J.W.P.); or (J.-H.S.); Tel.: +82-61-450-2704 (J.W.P.); +82-61-450-2684 (J.-H.S.)
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
- Correspondence: (J.W.P.); or (J.-H.S.); Tel.: +82-61-450-2704 (J.W.P.); +82-61-450-2684 (J.-H.S.)
| |
Collapse
|
4
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
5
|
Deng N, Qiao M, Li Y, Liang F, Li J, Liu Y. Anticancer effects of licochalcones: A review of the mechanisms. Front Pharmacol 2023; 14:1074506. [PMID: 36755942 PMCID: PMC9900005 DOI: 10.3389/fphar.2023.1074506] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Cancer is a disease with a high fatality rate representing a serious threat to human health. Researchers have tried to identify effective anticancer drugs. Licorice is a widely used traditional Chinese medicine with various pharmacological properties, and licorice-derived flavonoids include licochalcones like licochalcone A, licochalcone B, licochalcone C, licochalcone D, licochalcone E, and licochalcone H. By regulating the expression in multiple signaling pathways such as the EGFR/ERK, PI3K/Akt/mTOR, p38/JNK, JAK2/STAT3, MEK/ERK, Wnt/β-catenin, and MKK4/JNK pathways, and their downstream proteins, licochalcones can activate the mitochondrial apoptosis pathway and death receptor pathway, promote autophagy-related protein expression, inhibit the expression of cell cycle proteins and angiogenesis factors, regulate autophagy and apoptosis, and inhibit the proliferation, migration, and invasion of cancer cells. Among the licochalcones, the largest number of studies examined licochalcone A, far more than other licochalcones. Licochalcone A not only has prominent anticancer effects but also can be used to inhibit the efflux of antineoplastic drugs from cancer cells. Moreover, derivatives of licochalcone A exhibit strong antitumor effects. Currently, most results of the anticancer effects of licochalcones are derived from cell experiments. Thus, more clinical studies are needed to confirm the antineoplastic effects of licochalcones.
Collapse
Affiliation(s)
- Nan Deng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingming Qiao
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengyan Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Yanfeng Liu,
| |
Collapse
|
6
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
7
|
Zhang YY, Feng PP, Wang HF, Zhang H, Liang T, Hao XS, Wang FZ, Fei HR. Licochalcone B induces DNA damage, cell cycle arrest, apoptosis, and enhances TRAIL sensitivity in hepatocellular carcinoma cells. Chem Biol Interact 2022; 365:110076. [DOI: 10.1016/j.cbi.2022.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
|
8
|
Hu Y, Wu Y, Jiang C, Wang Z, Shen C, Zhu Z, Li H, Zeng Q, Xue Y, Wang Y, Liu L, Yi Y, Zhu H, Liu Q. Investigative on the Molecular Mechanism of Licorice Flavonoids Anti-Melanoma by Network Pharmacology, 3D/2D-QSAR, Molecular Docking, and Molecular Dynamics Simulation. Front Chem 2022; 10:843970. [PMID: 35308797 PMCID: PMC8924370 DOI: 10.3389/fchem.2022.843970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 01/29/2023] Open
Abstract
Licorice flavonoids (LCFs) are natural flavonoids isolated from Glycyrrhiza which are known to have anti-melanoma activities in vitro. However, the molecular mechanism of LCF anti-melanoma has not been fully understood. In this study, network pharmacology, 3D/2D-QSAR, molecular docking, and molecular dynamics (MD) simulation were used to explore the molecular mechanism of LCF anti-melanoma. First of all, we screened the key active components and targets of LCF anti-melanoma by network pharmacology. Then, the logIC50 values of the top 20 compounds were predicted by the 2D-QSAR pharmacophore model, and seven highly active compounds were screened successfully. An optimal 3D-QSAR pharmacophore model for predicting the activity of LCF compounds was established by the HipHop method. The effectiveness of the 3D-QSAR pharmacophore was verified by a training set of compounds with known activity, and the possible decisive therapeutic effect of the potency group was inferred. Finally, molecular docking and MD simulation were used to verify the effective pharmacophore. In conclusion, this study established the structure–activity relationship of LCF and provided theoretical guidance for the research of LCF anti-melanoma.
Collapse
Affiliation(s)
- Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - CuiPing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Hongxia Zhu, ; Qiang Liu,
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Hongxia Zhu, ; Qiang Liu,
| |
Collapse
|
9
|
Li Q, Feng H, Wang H, Wang Y, Mou W, Xu G, Zhang P, Li R, Shi W, Wang Z, Fang Z, Ren L, Wang Y, Lin L, Hou X, Dai W, Li Z, Wei Z, Liu T, Wang J, Guo Y, Li P, Zhao X, Zhan X, Xiao X, Bai Z. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7-NLRP3 interaction. EMBO Rep 2022; 23:e53499. [PMID: 34882936 PMCID: PMC8811655 DOI: 10.15252/embr.202153499] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
The activation of the nucleotide oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is related to the pathogenesis of a wide range of inflammatory diseases, but drugs targeting the NLRP3 inflammasome are still scarce. In the present study, we demonstrated that Licochalcone B (LicoB), a main component of the traditional medicinal herb licorice, is a specific inhibitor of the NLRP3 inflammasome. LicoB inhibits the activation of the NLRP3 inflammasome in macrophages but has no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, LicoB directly binds to NEK7 and inhibits the interaction between NLRP3 and NEK7, thus suppressing NLRP3 inflammasome activation. Furthermore, LicoB exhibits protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including lipopolysaccharide (LPS)-induced septic shock, MSU-induced peritonitis and non-alcoholic steatohepatitis (NASH). Our findings indicate that LicoB is a specific NLRP3 inhibitor and a promising candidate for treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Qiang Li
- School of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Hui Feng
- Department of UltrasoundFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Hongbo Wang
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yinghao Wang
- School of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Wenqing Mou
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Guang Xu
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ping Zhang
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ruisheng Li
- Research Center for Clinical and Translational MedicineFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wei Shi
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhilei Wang
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhie Fang
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Lutong Ren
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yan Wang
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Li Lin
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaorong Hou
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wenzhang Dai
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhiyong Li
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ziying Wei
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Tingting Liu
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jiabo Wang
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yuming Guo
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Pengyan Li
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xu Zhao
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaoyan Zhan
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaohe Xiao
- School of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhaofang Bai
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- China Military Institute of Chinese MateriaFifth Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
10
|
Huang Z, Jin G. Licochalcone B induced apoptosis and autophagy in osteosarcoma tumor cells via the inactivation of PI3K/AKT/mTOR pathway. Biol Pharm Bull 2022; 45:730-737. [DOI: 10.1248/bpb.b21-00991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhihui Huang
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force
| | - Genyang Jin
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force
| |
Collapse
|
11
|
Bcl-2 Modulation in p53 Signaling Pathway by Flavonoids: A Potential Strategy towards the Treatment of Cancer. Int J Mol Sci 2021; 22:ijms222111315. [PMID: 34768743 PMCID: PMC8582810 DOI: 10.3390/ijms222111315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major cause of death, affecting human life in both developed and developing countries. Numerous antitumor agents exist but their toxicity and low efficacy limits their utility. Furthermore, the complex pathophysiological mechanisms of cancer, serious side effects and poor prognosis restrict the administration of available cancer therapies. Thus, developing novel therapeutic agents are required towards a simultaneous targeting of major dysregulated signaling mediators in cancer etiology, while possessing lower side effects. In this line, the plant kingdom is introduced as a rich source of active phytochemicals. The secondary metabolites produced by plants could potentially regulate several dysregulated pathways in cancer. Among the secondary metabolites, flavonoids are hopeful phytochemicals with established biological activities and minimal side effects. Flavonoids inhibit B-cell lymphoma 2 (Bcl-2) via the p53 signaling pathway, which is a significant apoptotic target in many cancer types, hence suppressing a major dysregulated pathway in cancer. To date, there have been no studies reported which extensively highlight the role of flavonoids and especially the different classes of flavonoids in the modulation of Bcl-2 in the P53 signaling pathway. Herein, we discuss the modulation of Bcl-2 in the p53 signaling pathway by different classes of flavonoids and highlight different mechanisms through which this modulation can occur. This study will provide a rationale for the use of flavonoids against different cancers paving a new mechanistic-based approach to cancer therapy.
Collapse
|
12
|
Mirzaei S, Paskeh MDA, Hashemi F, Zabolian A, Hashemi M, Entezari M, Tabari T, Ashrafizadeh M, Raee P, Aghamiri S, Aref AR, Leong HC, Kumar AP, Samarghandian S, Zarrabi A, Hushmandi K. Long non-coding RNAs as new players in bladder cancer: Lessons from pre-clinical and clinical studies. Life Sci 2021; 288:119948. [PMID: 34520771 DOI: 10.1016/j.lfs.2021.119948] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
The clinical management of bladder cancer (BC) has become an increasing challenge due to high incidence rate of BC, malignant behavior of cancer cells and drug resistance. The non-coding RNAs are considered as key factors involved in BC progression. The long non-coding RNAs (lncRNAs) are RNA molecules and do not encode proteins. They have more than 200 nucleotides in length and affect gene expression at epigenetic, transcriptional and post-transcriptional phases. The lncRNAs demonstrate abnormal expression in BC cells and tissues. The present aims to identifying lncRNAs with tumor-suppressor and tumor-promoting roles, and evaluating their roles as regulatory of growth and migration. Apoptosis, glycolysis and EMT are tightly regulated by lncRNAs in BC. Response of BC cells to cisplatin, doxorubicin and gemcitabine chemotherapy is modulated by lncRNAs. LncRNAs regulate immune cell infiltration in tumor microenvironment and affect response of BC cells to immunotherapy. Besides, lncRNAs are able to regulate microRNAs, STAT3, Wnt, PTEN and PI3K/Akt pathways in affecting both proliferation and migration of BC cells. Noteworthy, anti-tumor compounds and genetic tools such as siRNA, shRNA and CRISPR/Cas systems can regulate lncRNA expression in BC. Finally, lncRNAs and exosomal lncRNAs can be considered as potential diagnostic and prognostic tools in BC.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Hin Chong Leong
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
14
|
Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113635. [PMID: 33246112 DOI: 10.1016/j.jep.2020.113635] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/25/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been commonly used in traditional Chinese medicine for treatment of gastric, liver, and respiratory disease conditions for more than two thousand years. It is a major component of several Chinese patent medicines certificated by National Medical Products Administration that possess great anticancer activities. AIM OF THE STUDY To comprehensively summarize the anticancer activities of licorice flavonoids, explain the underlying molecular mechanisms, and assess their therapeutic potentials and side-effects. METHODS PubMed, Research Gate, Web of Science, Google Scholar, academic journals, and Science Direct were used as information sources, with the key words of "anticancer", "licorice", "flavonoids", and their combinations, mainly from 2000 to 2019. RESULTS Sixteen licorice flavonoids are found to possess anticancer activities. These flavonoids inhibit cancer cells through blocking cell cycle and regulating multiple signaling pathways. The major pathways targeted by licorice flavonoids include: the MAPK pathway, PI3K/AKT pathway, NF-κB pathway, death receptor - dependent extrinsic signaling pathway, and mitochondrial apoptotic pathway. CONCLUSION Licorice flavonoids are a group of versatile molecules that have pleiotropic effects on cell growth, survival and cell signaling. Many of the flavonoids possess inhibitory activities toward cancer cell growth and hence have a great therapeutic potential in cancer treatment. However, additional preclinical studies are still needed to assess their in vivo efficacy and possible toxicities. It is also imperative to evaluate the effects of licorice flavonoids on the metabolism of other drugs and explore the potential synergistic mechanism.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
15
|
Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Wang ZF, Liu J, Yang YA, Zhu HL. A Review: The Anti-inflammatory, Anticancer and Antibacterial Properties of Four Kinds of Licorice Flavonoids Isolated from Licorice. Curr Med Chem 2020; 27:1997-2011. [PMID: 30277142 DOI: 10.2174/0929867325666181001104550] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
Plants have always been an important source of medicines for humans, and licorice is a very significant herb in the development of humans. As a traditional herb, it is widely cultivated in China, Japan, Russia, Spain and India. With the development of organic chemistry and biochemistry, various chemical ingredients extracted from licorice have been studied and identified. Among them, many chemical components were considered to have strong pharmacological activities, such as anti-inflammatory, anti-ulcer, antibacterial, anticancer and so on. Based on those reports, licorice has attracted the attention of many researchers in recent years, and they are devoted to discovering the active ingredients and mechanism of action of active compounds. Licorice flavonoids are one of the main extracts of licorice root and stem and have many potential biological properties. This paper aims to summarize the four kinds of licorice flavonoids, including liquiritigenin, isoliquiritigenin, licochalcone (including licochalcone A and licochalcone B) and glabridin, about their biological activities of anti-inflammatory, anticancer, antibacterial.
Collapse
Affiliation(s)
- Ze-Feng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yong-An Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.,Elionnature Biological Technology Co., Ltd., Nanjing 210038, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.,Elionnature Biological Technology Co., Ltd., Nanjing 210038, China
| |
Collapse
|
17
|
Natural Chalcones in Chinese Materia Medica: Licorice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3821248. [PMID: 32256642 PMCID: PMC7102474 DOI: 10.1155/2020/3821248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. These chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hepatoprotective activities, and so on. This review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
Collapse
|
18
|
Song M, Yoon G, Choi JS, Kim E, Liu X, Oh HN, Chae JI, Lee MH, Shim JH. Janus kinase 2 inhibition by Licochalcone B suppresses esophageal squamous cell carcinoma growth. Phytother Res 2020; 34:2032-2043. [PMID: 32144852 DOI: 10.1002/ptr.6661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/06/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
Esophageal cancer (EC) is one of the leading causes to cancer death in the worldwide and major population of EC is esophageal squamous cell carcinoma (ESCC). Still, ESCC-targeted therapy has not been covered yet. In the present study we have identified that Licochalcone B (Lico B) inhibited the ESCC growth by directly blocking the Janus kinase (JAK) 2 activity and its downstream signaling pathway. Lico B suppressed KYSE450 and KYSE510 ESCC cell growth, arrested cell cycle at G2/M phase and induced apoptosis. Direct target of Lico B was identified by kinase assay and verified with in vitro and ex vivo binding. Computational docking model predicted for Lico B interaction to ATP-binding pocket of JAK2. Furthermore, treatment of JAK2 clinical medicine AZD1480 to ESCC cells showed similar tendency with Lico B. Thus, JAK2 downstream signaling proteins phosphorylation of STAT3 at Y705 and S727 as well as STAT3 target protein Mcl-1 expression was decreased with treatment of Lico B. Our results suggest that Lico B inhibits ESCC cell growth, arrests cell cycle and induces apoptosis, revealing the underlying mechanism involved in JAK2/STAT3 signaling pathways after Lico B treatment. It might provide potential role of Lico B in the treatment of ESCC.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan-si, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Xuejiao Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, 85 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan-gun, Republic of Korea
| |
Collapse
|
19
|
Hou J, Qian J, Li Z, Gong A, Zhong S, Qiao L, Qian S, Zhang Y, Dou R, Li R, Yang Y, Gu C. Bioactive Compounds from Abelmoschus manihot L. Alleviate the Progression of Multiple Myeloma in Mouse Model and Improve Bone Marrow Microenvironment. Onco Targets Ther 2020; 13:959-973. [PMID: 32099399 PMCID: PMC6999766 DOI: 10.2147/ott.s235944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose Abelmoschus manihot (L.) Medik. (Malvaceae) derived Huangkui capsules (HKC) represent a traditional Chinese medicine that has been widely applied to the clinical therapy of kidney and inflammatory diseases. The present study aimed to determine the potential therapeutic effects and underlying mechanisms of the ingredients on Multiple Myeloma (MM), an incurable disease that exhibits malignant plasma cell clonal expansion in the bone marrow. Methods A 5TMM3VT syngeneic MM-prone model was established and treated with HKC. Murine pre-osteoblast MC3T3-E1 and pre-osteoclast Raw264.7 cells were treated with nine flavonoid compounds extracted from the flowers of Abelmoschus manihot. MC3T3-E1 and Raw264.7 cells were then examined by alizarin red staining and tartrate-resistant acid phosphatase activity staining, respectively. The proliferation of two human MM cells (ARP1, H929) was examined by performing an MTT assay following treatment with flavonoid compounds. Additionally, the cell cycle was analyzed via staining and flow cytometry. The differential expressions of certain proteins were detected via Western blotting, transcriptomic RNA-sequencing as well as RT-qPCR. Results The results revealed that MM-prone animals appeared to be protected following HKC treatment, as evidenced by a prolonged survival rate. Furthermore, four of the nine flavonoid compounds [Hyperin/Hyperoside, HK-2; Cannabiscitrin, HK-3; 3-O-kaempferol-3-O-acetyl-6-O-(p-coumaroyl)-β-D-glucopyranoside, HK-11; 8-(2’’-pyrrolidione-5’’-yl)-quercetin, HK-B10] induced the differentiation of murine pre-osteoblast MC3T3-E1 cells. In addition, two compounds [Isomyricitrin, HK-8; quercetin-8-(2’’-pyrrolidione-5”-yl)-3ʹ-O-β-D-glucopyranosid, HK-E3] suppressed osteoclastogenesis in murine Raw264.7 cells. HK-11 directly inhibited MM cells (ARP1 and H929) proliferation and induced G0/G1 cell cycle arrest, which may have involved the suppressing β-catenin protein, increasing expressions of IL-6 and TNF-α, as well as activating mature TGF-β1 and some other metabolic pathways. Conclusion These results of the present study indicated that the bio-active ingredients of HKC exerted protective effects on MM mouse survival through promoting osteoblastogenesis and suppressing osteoclastogenesis, thus improving the bone marrow microenvironment to inhibit MM cell proliferation.
Collapse
Affiliation(s)
- Jianhao Hou
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, People's Republic of China.,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jinjun Qian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Zhenlin Li
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, People's Republic of China.,Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210028, People's Republic of China
| | - Aixiu Gong
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing 210009, People's Republic of China
| | - Sixia Zhong
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Li Qiao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Shihui Qian
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, People's Republic of China.,Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210028, People's Republic of China
| | - Yanxin Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Renjie Dou
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Rui Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, People's Republic of China.,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| |
Collapse
|
20
|
Wang C, Chen L, Xu C, Shi J, Chen S, Tan M, Chen J, Zou L, Chen C, Liu Z, Liu X. A Comprehensive Review for Phytochemical, Pharmacological, and Biosynthesis Studies on Glycyrrhiza spp. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:17-45. [PMID: 31931596 DOI: 10.1142/s0192415x20500020] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Licorice is extensively applied in food as well as herbal medicine across the world, possessing a substantial share in the global market. It has made great progress in chemical and pharmacological research in recent years. Currently, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., and Glycyrrhiza glabra L. were officially used as Gan-Cao according to the Chinese Pharmacopoeia. Accumulating evidence demonstrated three varieties of licorice have their own special compounds except for two quality markers set by Pharmacopoeia, providing great possibility for better understanding their characteristics, evaluating quality of each species and studying biosynthesis mechanisms of species-specific compounds. As a special "guide drug" in clinic, licorice plays an important role in Chinese herbal formulas. The interaction between licorice with other ingredients and their metabolism in vivo should also be taken into consideration. In addition, draft genome annotation, and success of the final step of glycyrrhizin biosynthesis have paved the way for biosynthesis of other active constituents in licorice, a promising beginning of solving source shortage. Accordingly, we comprehensively explored the nearly 400 chemical compounds found in the three varieties of licorice so far, systematically excavated various pharmacological activities, including metabolism via CYP450 system in vivo, and introduced the complete biosynthesis pathway of glycyrrhizin in licorice. The review will facilitate the further research toward this herbal medicine.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Chaoqie Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jingjing Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Shuyu Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Mengxia Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jiali Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lisi Zou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cuihua Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zixiu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Collaborative Innovation Center of Chinese, Medicinal Resources Industrialization, Nanjing 210023, P. R. China.,National and Local Collaborative Engineering, Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
21
|
Microbial Transformation of Licochalcones. Molecules 2019; 25:molecules25010060. [PMID: 31878031 PMCID: PMC6982849 DOI: 10.3390/molecules25010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/24/2023] Open
Abstract
Microbial transformation of licochalcones B (1), C (2), D (3), and H (4) using the filamentous fungi Aspergillus niger and Mucor hiemalis was investigated. Fungal transformation of the licochalcones followed by chromatographic separations led to the isolation of ten new compounds 5–14, including one hydrogenated, three dihydroxylated, three expoxidized, and three glucosylated metabolites. Their structures were elucidated by combined analyses of UV, IR, MS, NMR, and CD spectroscopic data. Absolute configurations of the 2″,3″-diols in the three dihydroxylated metabolites were determined by ECD experiments according to the Snatzke’s method. The trans-cis isomerization was observed for the metabolites 7, 11, 13, and 14 as evidenced by the analysis of their 1H-NMR spectra and HPLC chromatograms. This could be useful in better understanding of the trans-cis isomerization mechanism of retrochalcones. The fungal transformation described herein also provides an effective method to expand the structural diversity of retrochalcones for further biological studies.
Collapse
|
22
|
Oh HN, Lee MH, Kim E, Yoon G, Chae JI, Shim JH. Licochalcone B inhibits growth and induces apoptosis of human non-small-cell lung cancer cells by dual targeting of EGFR and MET. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153014. [PMID: 31323446 DOI: 10.1016/j.phymed.2019.153014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) gene alterations are associated with sensitization to tyrosine kinase inhibitors such as gefitinib in lung cancer. Some patients suffering from non-small cell lung cancer (NSCLC) have difficulty in treating the cancer due to resistance acquired to gefitinib with MET amplification. Therefore EGFR and MET may be attractive targets for lung cancer therapy. PURPOSE This study aimed to investigate the anti-cancer activity of Licochalcone (LC)B extracted from Glycyrrhiza inflata, in gefitinib-sensitive or gefitinib-resistant NSCLC cells, and to define its mechanisms. STUDY DESIGN We investigated the mechanism of action of LCB by targeting EGFR and MET in human NSCLC cells. METHODS We used the HCC827 and HCC827GR lines as gefitinib-sensitive and -resistant cells respectively, and determined the effects of LCB on both, by performing cell proliferation assay, flow cytometry analysis and Western blotting. Targets of LCB were identified by pull-down/kinase assay and molecular docking simulation. RESULTS LCB inhibited both EGFR and MET kinase activity by directly binding to their ATP-binding pockets. The ability of this interaction was verified by computational docking and molecular dynamics simulations. LCB suppressed viability and colony formation of both HCC827 and HCC827GR cells while exhibiting no cytotoxicity to normal cells. The induction of G2/M cell-cycle arrest and apoptosis by LCB was confirmed by Annexin V/7-AAD double staining, ER stress and reactive oxygen species induction, mitochondrial membrane potential loss and caspase activation as well as related-proteins regulation. Inhibition of EGFR and MET by LCB decreased ERBB3 and AKT axis activation. CONCLUSION We provide insights into the LCB-mediated mechanisms involved in reducing cell proliferation and inducing apoptosis in NSCLC cells. This occurs through dual inhibition of EGFR and MET in NSCLC cells regardless of their sensitivity or resistance to gefitinib. LCB may be a promising novel therapeutic medicine for gefitinib-sensitive or resistant NSCLC treatment.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, PR China; Basic Medical College, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, PR China.
| |
Collapse
|
23
|
Maria Pia GD, Sara F, Mario F, Lorenza S. Biological Effects of Licochalcones. Mini Rev Med Chem 2019; 19:647-656. [PMID: 30049263 DOI: 10.2174/1389557518666180601095420] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
Abstract
Medicinal plants and their natural bioactive molecules, are evaluated as the foundation for health preservation and care of humanity. The licorice root, known as "Radix Glycyrrhizae", is a perennial plant that comes from Mediterranean countries, central to southern Russia, Asia, Turkey, Iraq and Iran. The licorice root has been used in traditional Chinese medicines for centuries and has been defined as "the progenitor of herbs". The name 'Licorice' is derived from the ancient Greek word Glukurrhiza, meaning 'sweet root'. It consists of approximately 30 species, however, the most common ones consist of Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch and Glycyrrhiza Inflata. In addition, the licorice root contains chalcones, which are a part of an important class of natural products and are precursors of flavonoids. Chemically, chalcones are composed of two aromatic rings associated with α, β-unsaturated α-carbon ketone, representing the prima nucleus of the structure. They have been classified, according to chemical structures, in Licochalcone A, B, C, D, E, F and G. This review aims to highlight all the in vitro and in vivo studies that have been conducted on the licochalcones, extracted from Glycyrrhiza species. The main effects are as follows: anti-inflammatory, antioxidant, anticancer, antimicrobial, antiviral, antiallergic, antidiabetic, hepatotoxic and osteogenic. It is important to implement the introduction of biologically active natural molecules from the bench (research) to the bedside (clinical practice). However, in the future, it is required to conduct additional studies to validate these biological effects.
Collapse
Affiliation(s)
- Gatta Daniela Maria Pia
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Franceschelli Sara
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Felaco Mario
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| | - Speranza Lorenza
- Department of Medicine and Science of Aging, University "G. D'Annunzio", Chieti 66100, Italy
| |
Collapse
|
24
|
Wang J, Liao AM, Thakur K, Zhang JG, Huang JH, Wei ZJ. Licochalcone B Extracted from Glycyrrhiza uralensis Fisch Induces Apoptotic Effects in Human Hepatoma Cell HepG2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3341-3353. [PMID: 30835110 DOI: 10.1021/acs.jafc.9b00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The present study explored the molecular mechanism by which licochalcone B induces the cell cycle arrest and apoptosis in human hepatoma cell HepG2. Initial extraction and identification were performed by HPLC, UPLC-TOF-MS/MS, and NMR analysis, respectively. Licochalcone B inhibited the HepG2 growth with IC50 (110.15 μM) after 24 h, caused morphological distortion, and seized the cell cycle in the G2/M phase (cell arrest in G2/M:43.1 ± 2.2% for 120 μM versus 23.7 ± 1.2% for control), as well as induced apoptosis and intracellular ROS generation. Furthermore, exposure to licochalcone B markedly affected the cell cycle (up/down regulation) at mRNA and protein levels. Apoptosis was induced through the activation of receptor-mediated and mitochondrial pathways. The inhibition of Caspase 8 and Caspase 9 proteins abolished the licochalcone B induced apoptosis. The present work suggested that licochalcone B may further be identified as a potent functional food component with specific health benefits.
Collapse
Affiliation(s)
- Jun Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Ai-Mei Liao
- College of Biological Engineering , Henan University of Technology , Zhengzhou 450001 , People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Ji-Hong Huang
- College of Biological Engineering , Henan University of Technology , Zhengzhou 450001 , People's Republic of China
- Henan Cooperation Science and Technology Institute, Luoyang 471000 , People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
- Anhui Province Key Laboratory of Functional Compound Seasoning , Anhui Qiangwang Seasoning Food Co., Ltd. , Jieshou 236500 , People's Republic of China
| |
Collapse
|
25
|
Cao Y, Xu W, Huang Y, Zeng X. Licochalcone B, a chalcone derivative from Glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer’s disease. Nat Prod Res 2018; 34:736-739. [PMID: 30345819 DOI: 10.1080/14786419.2018.1496429] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yingying Cao
- Department of Phase I Research Center, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenxing Xu
- Department of Phase I Research Center, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyou Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xing Zeng
- Department of Phase I Research Center, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Kang TH, Yoon G, Kang IA, Oh HN, Chae JI, Shim JH. Natural Compound Licochalcone B Induced Extrinsic and Intrinsic Apoptosis in Human Skin Melanoma (A375) and Squamous Cell Carcinoma (A431) Cells. Phytother Res 2017; 31:1858-1867. [PMID: 29027311 DOI: 10.1002/ptr.5928] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Licochalcone B (Lico B), which is normally isolated from the roots of Glycyrrhiza inflata (Chinese Licorice), generally classified into organic compounds including retrochalcones. Potential pharmacological properties of Lico B include anti-inflammatory, anti-bacterial, anti-oxidant, and anti-cancer activities. However, its biological effects on melanoma and squamous cell carcinoma (SCC) are unknown. Based on these known facts, this study investigated the role of Lico B in apoptosis, through the extrinsic and intrinsic pathways and additional regulation of specificity protein 1 in human skin cancer cell lines. Annexin V/7-aminoactinomycin D staining, western blot analysis, mitochondrial membrane potential assay, and an anchorage-independent cell transformation assay demonstrated that Lico B treatment of human melanoma and SCC cells significantly inhibited cell proliferation and induced apoptotic cell death. More specifically, Lico B induced apoptosis through the regulation of specificity protein 1 and apoptosis-related proteins including CCAAT/enhancer-binding protein homologous protein, death receptors, and poly (ADP-ribose) polymerase. These results indicate that Lico B has apoptotic effect on A375 and A431 skin cancer cells, suggesting the potential value of Lico B for the treatment of human melanoma and SCC. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tae-Ho Kang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - In-A Kang
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Yu SJ, Cho IA, Kang KR, Jung YR, Cho SS, Yoon G, Oh JS, You JS, Seo YS, Lee GJ, Lee SY, Kim DK, Kim CS, Kim SG, Jeong MA, Kim JS. Licochalcone-E induces caspase-dependent death of human pharyngeal squamous carcinoma cells through the extrinsic and intrinsic apoptotic signaling pathways. Oncol Lett 2017; 13:3662-3668. [PMID: 28521469 PMCID: PMC5431251 DOI: 10.3892/ol.2017.5865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/03/2017] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to investigate licochalcone-E (Lico-E)-induced apoptosis and the associated apoptotic signaling pathway in FaDu cells, a human pharyngeal squamous carcinoma cell line. Treatment with Lico-E exhibited significant cytotoxicity on FaDu cells in a concentration-dependent manner. The IC50 value of Lico-E in FaDu cells was ~50 µM. Treatment with Lico-E increased the number of dead FaDu cells. Furthermore, chromatin condensation, which is associated with apoptotic cell death, was observed in FaDu cells treated with Lico-E for 24 h. By contrast, Lico-E did not produce cytotoxicity or increase the number of dead cells when applied to human normal oral keratinocytes (hNOKs). Furthermore, chromatin condensation was not observed in hNOKs treated with Lico-E. Treatment with Lico-E increased the expression of Fas ligand and the cleaved form of caspase-8 in FaDu cells. Furthermore, treatment with Lico-E increased the expression of pro-apoptotic factors, including apoptosis regulator BAX, Bcl-2-associated agonist of cell death, apoptotic protease-activating factor 1, caspase-9 and tumor suppressor p53, while decreasing the expression of anti-apoptotic factors, including apoptosis regulator Bcl-2 and Bcl-2-like protein 1 in FaDu cells. The expression of cleaved caspases-3 and poly (ADP-ribose) polymerase was significantly upregulated following treatment with Lico-E in FaDu cells, while Lico-E-induced apoptotic FaDu cell death was partially suppressed by treatment with Z-VAD-FMK, a pan caspase inhibitor. Therefore, Lico-E-induced oral cancer (OC) cell-specific apoptosis is mediated by the death receptor-dependent extrinsic and mitochondrial-dependent intrinsic apoptotic signaling pathways. In conclusion, these data suggested that Lico-E exhibits potential chemopreventive effects and warrants further developed as a chemotherapeutic agent against OC.
Collapse
Affiliation(s)
- Sang-Joun Yu
- Department of Periodontology, School of Dentistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - In-A Cho
- Department of Biodental Engineering, Graduate School, Chosun University, Gwangju 501-759, Republic of Korea
| | - Kyeong-Rok Kang
- Department of Biodental Engineering, Graduate School, Chosun University, Gwangju 501-759, Republic of Korea
| | - Yi-Ra Jung
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Mokpo, Jeollanamdo 353-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Mokpo, Jeollanamdo 353-729, Republic of Korea
| | - Ji-Su Oh
- Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju 501-759, Republic of Korea
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju 501-759, Republic of Korea
| | - Yo-Seob Seo
- Department of Oral and Maxillofacial Radiology, Chosun University, Gwangju 501-759, Republic of Korea
| | - Gyeong-Je Lee
- Department of Prosthodontics, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sook-Young Lee
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Do Kyung Kim
- Oral Biology Research Institute, Chosun University, Gwangju 501-759, Republic of Korea
| | - Chun Sung Kim
- Oral Biology Research Institute, Chosun University, Gwangju 501-759, Republic of Korea
| | - Su-Gwan Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju 501-759, Republic of Korea
- Oral Biology Research Institute, Chosun University, Gwangju 501-759, Republic of Korea
| | - Mi-Ae Jeong
- Department of Dental Hygiene, Kangwon National University, Samcheok, Gangwon 259-13, Republic of Korea
| | - Jae-Sung Kim
- Pre-Dentistry, School of Dentistry, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|
28
|
Öztürk M, Altay V, Hakeem KR, Akçiçek E. Economic Importance. LIQUORICE 2017. [PMCID: PMC7120331 DOI: 10.1007/978-3-319-74240-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The beneficial effects of liquorice in treating chills, colds, and coughs have been fully discussed in Ayurveda, as well as in the texts of ancient Egyptians, Greeks, and Romans. The plant has been prescribed for dropsy during the period of famous Hippocrates. The reason being that it was quite helpful as thirst-quenching drugs (Biondi et al. in J Nat Prod 68:1099–1102, 2005; Mamedov and Egamberdieva in Herbals and human health-phytochemistry. Springer Nature Publishers, 41 pp, 2017). No doubt, the clinical use of liquorice in modern medicine started around 1930; Pedanios Dioscorides of Anazarba (Adana), first century AD-Father of Pharmacists, mentions that it is highly effective in the treatment of stomach and intestinal ulcers. In Ayurveda, people in ancient Hindu culture have used it for improving sexual vigor.
Collapse
Affiliation(s)
- Münir Öztürk
- Department of Botany and Center for Environmental Studies, Ege University, Izmir, Turkey
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Mustafa Kemal University, Hatay, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eren Akçiçek
- Department of Gastroenterology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
29
|
Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells. Sci Rep 2016; 6:20417. [PMID: 26838546 PMCID: PMC4738303 DOI: 10.1038/srep20417] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. Mulberry fruit is rich in phenolic compounds and flavonoids and exhibits chemopreventive activities. In this study, mulberry water extract (MWE) was used as a supplement to synergize with the effects of paclitaxel in the treatment of the TSGH 8301 human bladder cancer cell line. Treatment with paclitaxel combined with MWE (paclitaxel/MWE) enhanced the cytotoxicity of paclitaxel and induced severe G2/M arrest, mitotic catastrophe and subsequent apoptosis, as shown by MTT assay, HE staining and flow cytometry analyses. Differences in the expression and activation of Aurora A and Plk1between cells treated with paclitaxel/MWE and paclitaxel alone suggested that the combined treatment caused a defect in the early steps of cytokinesis. Paclitaxel/MWE decreased EEA1immunofluorescence staining and increased the expression of PTEN, indicating that the regimen inhibited the formation of the recycling endosome, which is required for cytokinesis. Paclitaxel/MWE also retarded tumor growth in a TSGH 8301 xenograft model via activation of PTEN and Caspase 3. These data demonstrated a synergistic effect on the anticancer efficacy of paclitaxel through MWE supplementation by promoting mitotic catastrophe through the activation of PTEN, providing a novel and effective therapeutic option for bladder cancer treatment strategies.
Collapse
|
30
|
Oh H, Yoon G, Shin JC, Park SM, Cho SS, Cho JH, Lee MH, Liu K, Cho YS, Chae JI, Shim JH. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. Int J Oncol 2016; 48:1749-57. [PMID: 26847145 DOI: 10.3892/ijo.2016.3365] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/27/2015] [Indexed: 11/05/2022] Open
Abstract
Licochalcone B (Lico B), which belongs to the retrochalcone family, is isolated from the roots of Chinese licorice. Lico B has been reported to have several other useful pharmacological properties, such as anti-inflammatory, antibacterial, antioxidant, antiulcer, anticancer, and anti-metastasis activities. We elucidated the underlying mechanism by which Lico B can induce apoptosis in oral squamous cell carcinoma (OSCC). Our results showed that exposure of OSCC cells (HN22 and HSC4) to Lico B significantly inhibited cell proliferation in a time- and concentration-dependent manner. Lico B caused cell cycle arrest at G1 phase along with downregulation of cyclin D1 and upregulation of p21 and p27 proteins. Lico B also facilitated the diffusion of phospholipid phosphatidylserine (PS) from inner to outer leaflets of the plasma membrane with chromatin condensation, DNA fragmentation, accumulated sub-G1 population in a concentration-dependent manner. Moreover, Lico B promoted the generation of reactive oxygen species (ROS), which, in turn, can induce CHOP, death receptor (DR) 4 and DR5. Lico B treatment induced downregulation of anti-apoptotic proteins (Bid and Bcl-xl and Mcl-1), and up-regulation of pro-apoptotic protein (Bax). Lico B also led to the loss of mitochondrial membrane potential (MMP), resulting in cytochrome c release. As can be expected from the above results, the apoptotic protease activating factor-1 (Apaf-1) and survivin were oppositely expressed in favor of apoptotic cell death. This notion was supported by the fact that Lico B activated multi-caspases with cleavage of poly (ADP-ribose) polymerase (PARP) protein. Therefore, it is suggested that Lico B is a promising drug for the treatment of human oral cancer via the induction of apoptotic cell death.
Collapse
Affiliation(s)
- Hana Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Mee-Hyun Lee
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450001, P.R. China
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
31
|
Bhat A, Mokou M, Zoidakis J, Jankowski V, Vlahou A, Mischak H. BcCluster: A Bladder Cancer Database at the Molecular Level. Bladder Cancer 2016; 2:65-76. [PMID: 27376128 PMCID: PMC4927921 DOI: 10.3233/blc-150024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bladder Cancer (BC) has two clearly distinct phenotypes. Non-muscle invasive BC has good prognosis and is treated with tumor resection and intravesical therapy whereas muscle invasive BC has poor prognosis and requires usually systemic cisplatin based chemotherapy either prior to or after radical cystectomy. Neoadjuvant chemotherapy is not often used for patients undergoing cystectomy. High-throughput analytical omics techniques are now available that allow the identification of individual molecular signatures to characterize the invasive phenotype. However, a large amount of data produced by omics experiments is not easily accessible since it is often scattered over many publications or stored in supplementary files. OBJECTIVE To develop a novel open-source database, BcCluster (http://www.bccluster.org/), dedicated to the comprehensive molecular characterization of muscle invasive bladder carcinoma. MATERIALS A database was created containing all reported molecular features significant in invasive BC. The query interface was developed in Ruby programming language (version 1.9.3) using the web-framework Rails (version 4.1.5) (http://rubyonrails.org/). RESULTS BcCluster contains the data from 112 published references, providing 1,559 statistically significant features relative to BC invasion. The database also holds 435 protein-protein interaction data and 92 molecular pathways significant in BC invasion. The database can be used to retrieve binding partners and pathways for any protein of interest. We illustrate this possibility using survivin, a known BC biomarker. CONCLUSIONS BcCluster is an online database for retrieving molecular signatures relative to BC invasion. This application offers a comprehensive view of BC invasiveness at the molecular level and allows formulation of research hypotheses relevant to this phenotype.
Collapse
Affiliation(s)
- Akshay Bhat
- Charité-Universitätsmedizin Berlin, Berlin, Germany; Mosaiques diagnostics GmbH, Hannover, Germany
| | - Marika Mokou
- Biomedical Research Foundation Academy of Athens , Biotechnology Division, Athens, Greece
| | - Jerome Zoidakis
- Biomedical Research Foundation Academy of Athens , Biotechnology Division, Athens, Greece
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR) , Aachen, Germany
| | - Antonia Vlahou
- Biomedical Research Foundation Academy of Athens , Biotechnology Division, Athens, Greece
| | - Harald Mischak
- Mosaiques diagnostics GmbH, Hannover, Germany; BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
32
|
Wang P, Yuan X, Wang Y, Zhao H, Sun X, Zheng Q. Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells. Mol Med Rep 2015; 12:7623-8. [PMID: 26397392 DOI: 10.3892/mmr.2015.4346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 07/22/2015] [Indexed: 11/06/2022] Open
Abstract
The current study investigated the mechanisms by which licochalcone C induces apoptosis of T24 human malignant bladder cancer cells. Cell viability was evaluated using an MTT assay. Apoptosis was investigated using a morphological assay, flow cytometry and a caspase‑3 activity assay. Alterations in the gene expression levels of Bcl‑2 family members were measured by semi‑quantitative reverse transcription‑polymerase chain reaction assays. The protein levels of pro‑caspase‑3 and cleaved poly(ADP ribose) polymerase were measured using western blotting. The results indicated that licochalcone C induced T24 cell apoptosis in a concentration‑dependent manner. Licochalcone C treatment reduced the levels of the anti‑apoptotic mRNAs (Bcl‑2, Bcl‑w and Bcl‑XL) and increased expression of the pro‑apoptotic mRNAs (Bax and Bim). The Bcl‑2 family inhibitor (ABT‑737) reduced apoptosis induced by licochalcone C in T24 cells. The current study demonstrated that licochalcone C may be a potential adjuvant therapeutic agent for bladder cancer.
Collapse
Affiliation(s)
- Penglong Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xuan Yuan
- Shandong Provincial Key Laboratory of Metabolic Disease, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Yan Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Hong Zhao
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xiling Sun
- Shandong Provincial Key Laboratory of Heart‑Spleen Foundation of Traditional Chinese Medicine, Binzhou Medical College, Yantai, Shandong 264005, P.R. China
| | - Qiusheng Zheng
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
33
|
Hao W, Yuan X, Yu L, Gao C, Sun X, Wang D, Zheng Q. Licochalcone A-induced human gastric cancer BGC-823 cells apoptosis by regulating ROS-mediated MAPKs and PI3K/AKT signaling pathways. Sci Rep 2015; 5:10336. [PMID: 25981581 PMCID: PMC4434846 DOI: 10.1038/srep10336] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/10/2015] [Indexed: 11/09/2022] Open
Abstract
Both phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen activated protein kinase (MAPK) signaling cascades play an important role in cell proliferation, survival, angiogenesis, and metastasis of tumor cells. In the present report, we investigated the effects of licochalcone A (LA), a flavonoid extracted from licorice root, on the PI3K/AKT/mTOR and MAPK activation pathways in human gastric cancer BGC-823 cells. LA increased reactive oxygen species (ROS) levels, which is associated with the induction of apoptosis as characterized by positive Annexin V binding and activation of caspase-3, and cleavage of poly-ADP-ribose polymerase (PARP). Inhibition of ROS generation by N-acetylcysteine (NAC) significantly prevented LA-induced apoptosis. Interestingly, we also observed that LA caused the activation of ERK, JNK, and p38 MAPK in BGC-823 cells. The antitumour activity of LA-treated BGC-823 cells was significantly distinct in KM mice in vivo. All the findings from our study suggest that LA can interfere with MAPK signaling cascades, initiate ROS generation, induce oxidative stress and consequently cause BGC cell apoptosis.
Collapse
Affiliation(s)
- Wenjin Hao
- Binzhou medical University, Yantai, 264003, Shandong, China
| | - Xuan Yuan
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Lina Yu
- Binzhou medical University, Yantai, 264003, Shandong, China
| | - Caixia Gao
- Binzhou medical University, Yantai, 264003, Shandong, China
| | - Xiling Sun
- Binzhou medical University, Yantai, 264003, Shandong, China
| | - Dong Wang
- Qianfoshan Hospital of Shandong University, Jinan, 250014, China
| | - Qiusheng Zheng
- 1] Binzhou medical University, Yantai, 264003, Shandong, China [2] Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
34
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
35
|
Park JH, Jun JG, Kim JK. (E)-3-(3,4-dihydroxy-2-methoxyphenyl)-1-(2,4-dihydroxyphenyl)prop-2-en-1-one, a novel licochalcone B derivative compound, suppresses lipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. Chem Biol Interact 2014; 224:142-8. [DOI: 10.1016/j.cbi.2014.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
|
36
|
Yang R, Wang LQ, Liu Y. Antitumor Activities of Widely-used Chinese Herb—Licorice. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
37
|
Zhao H, Yuan X, Jiang J, Wang P, Sun X, Wang D, Zheng Q. Antimetastatic Effects of Licochalcone B on Human Bladder Carcinoma T24 by Inhibition of Matrix Metalloproteinases-9 and NF-кB Activity. Basic Clin Pharmacol Toxicol 2014; 115:527-33. [DOI: 10.1111/bcpt.12273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/14/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Zhao
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
- School of Pharmacy; Shihezi University; Shihezi China
| | - Xuan Yuan
- School of Pharmacy; Shihezi University; Shihezi China
| | | | - Penglong Wang
- School of Pharmacy; Shihezi University; Shihezi China
| | - Xiling Sun
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
| | - Dong Wang
- Qianfoshan Hospital of Shandong Province; Jinan China
| | - Qiusheng Zheng
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
- School of Pharmacy; Shihezi University; Shihezi China
| |
Collapse
|
38
|
Pharmacological Activities of Sijunzi Decoction Which Are Related to Its Antioxidant Properties. J CHEM-NY 2014. [DOI: 10.1155/2014/278318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper introduces the antioxidant constituents and pharmacological effects of Sijunzi decoction by looking up literatures in recent years. Sijunzi decoction is composed of Ginseng, Atractylodes, Tuckahoe, and Glycyrrhiza. The antioxidant ingredients of Sijunzi decoction include paeonol, dauricine, naringin, and isoliquiritigenin. The study has proved that it possesses wide pharmacological effects of anticardiovascular diseases, antinervous system disease, antidiabetes, antimetabolic syndrome, and antitumor. Research on the antioxidant components of Sijunzi decoction and their targets is a promising study area in the future.
Collapse
|