1
|
Ndlovu KL, Mwanza M, Nleya N, Ngoma L. Detection and quantification of antibiotic residues in goat milk in Mahikeng Local Municipality. J S Afr Vet Assoc 2024; 95:121-130. [PMID: 39248355 DOI: 10.36303/jsava.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Goat milk could be used to reduce malnutrition since it is highly nutritious, and many people in rural communities in South Africa rear small ruminants for survival. However, the risk of food contamination by antibiotic residues is one of the significant problems facing public health, and is a result of the irresponsible use of veterinary drugs. One hundred goat farmers were interviewed using a questionnaire, and raw milk samples from 266 goats were collected and analysed for the presence of antibiotic residues. Screening for amoxicillin, tetracycline, sulfamethazine, erythromycin, and streptomycin residues was done using the enzymelinked immunosorbent assay (ELISA) while high-performance liquid chromatography (HPLC) was carried out for confirmation. The questionnaire shows that all (100%) of the participants acknowledged the use of antibiotics on their goats and 99% of them were aware of the possibility of antibiotic residues in milk. ELISA results for residues of erythromycin, sulfamethazine and amoxicillin exceeded the Codex Alimentarius maximum residue levels (MRLs) in 94.7%, 82.3%, and 35.3% of analysed samples, respectively. Tetracycline was present in all (100%) analysed milk samples, and streptomycin was detected in 18.7% of samples; however, these results were below the recommended MRLs. The HPLC method confirmed the presence of streptomycin and tetracycline residues in 90% and 40% of the samples analysed. However, the concentrations were below the accepted MRL standards. Approximately 76.6% of samples exceeded the established MRL for sulfamethazine and 10% for erythromycin. Amoxicillin was not detected by the HPLC method. The results obtained in this study indicate a high level of contamination of goat milk with antibiotic residues, which may harm the health of the consumers.
Collapse
Affiliation(s)
- K L Ndlovu
- Department of Animal Health, School of Agriculture, North-West University, South Africa
| | - M Mwanza
- Department of Animal Health, School of Agriculture, North-West University, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, South Africa
| | - N Nleya
- Department of Animal Health, School of Agriculture, North-West University, South Africa
| | - L Ngoma
- Department of Animal Health, School of Agriculture, North-West University, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, South Africa
| |
Collapse
|
2
|
Tantawy MA, Yehia AM, Elbalkiny HT. All-solid-state chip utilizing molecular imprinted polymer for erythromycin detection in milk samples: Printed circuit board-based potentiometric system. Mikrochim Acta 2023; 190:408. [PMID: 37733266 PMCID: PMC10514120 DOI: 10.1007/s00604-023-05959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
Detection of erythromycin (ERY) residues in commercial milk samples is crucial for the safety assessment. Herein, a printed circuit board was patterned as a feasible miniaturized potentiometric sensor for ERY determination in dairy samples. The proposed chip design fits to a 3.5-mm female audio plug to facilitate the potential measurements of working electrode versus reference one in this all-solid-state system. The sensor utilizes molecular imprinted polymer (MIP) for the selective recognition of the studied drug in such challenging matrix. The electrode stability is achieved through the addition of poly (3,4-ethylenedioxythiophene) nano-dispersion on its surface. The proposed device detects down to 6.6 × 10-8 M ERY with a slope of 51 mV/decade in the 1 × 10-7-1 × 10-3 M range. The results display high accuracy (99.9% ± 2.6) with satisfactory relative standard deviation for repeatability (1.6%) and reproducibility (5.0%). The effect of common antibiotic classes, namely, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, can be neglected as evidenced by their calculated binding capacities towards the proposed MIP. The calculated selectivity coefficients also show a good electrode performance in the presence of naturally present inorganic ions allowing its application to different milk samples.
Collapse
Affiliation(s)
- Mahmoud A Tantawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini St, Cairo, 11562, Egypt.
- Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| | - Ali M Yehia
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini St, Cairo, 11562, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Capital, Garden City, Cairo, R5 New, Egypt
| | - Heba T Elbalkiny
- Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6th October City, 11787, Egypt
| |
Collapse
|
3
|
A novel molecularly imprinted electrode modified with carbon nanohorn and polydopamine for highly sensitive determination of erythrocin in food. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Cañadas R, Garcinuño Martínez R, Paniagua González G, Fernández Hernando P. Development of a molecularly imprinted polymeric membrane for determination of macrolide antibiotics from cow milk. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Wang X, Chen G, Zhang P, Jia Q. Advances in epitope molecularly imprinted polymers for protein detection: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1660-1671. [PMID: 33861232 DOI: 10.1039/d1ay00067e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epitope molecularly imprinted polymers (EMIPs) are novel imprinted materials using short characteristic peptides as templates rather than entire proteins. To be specific, the amino acid sequence of the template peptide is the same as an exposed N- or C-terminus of a target protein, or its amino acid composition and sequence replicate a similar conformational arrangement as the same amino acid residues on the surface of the target protein. EMIPs have a good application prospect in protein research. Herein, we focus on classification of epitope imprinting techniques, methods of epitope immobilization on matrix materials including boronate affinity immobilization, covalent bonding immobilization, physical adsorption immobilization and metal ion chelation immobilization, and application of EMIPs in peptides, proteins, target imaging and target therapy fields. Finally, the main problems and future development are summarized.
Collapse
Affiliation(s)
- Xindi Wang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | |
Collapse
|
6
|
Tarannum N, Khatoon S, Dzantiev BB. Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107381] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
A review of pretreatment and analysis of macrolides in food (Update Since 2010). J Chromatogr A 2020; 1634:461662. [PMID: 33160200 DOI: 10.1016/j.chroma.2020.461662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Macrolides are versatile broad-spectrum antibiotics whose activity stems from the presence of a macrolide ring. They are widely used in veterinary medicine to prevent and treat disease. However, because of their improper use and the absence of effective regulation, these compounds pose a threat to human health and the environment. Consequently, simple, quick, economical, and effective techniques are required to analyze macrolides in animal-derived foods, biological samples, and environmental samples. This paper presents a comprehensive overview of the pretreatment and analytical methods used for macrolides in various sample matrices, focusing on the developments since 2010. Pretreatment methods mainly include liquid-liquid extraction, solid-phase extraction, matrix solid-phase dispersion, and microextraction methods. Detection and quantification methods mainly include liquid chromatography (coupled to mass spectrometry or other detectors), electrochemical methods, capillary electrophoresis, and immunoassays. Furthermore, a comparison between the pros and cons of these methods and prospects for future developments are also discussed.
Collapse
|
8
|
Wang J, Ling Y, Zhou W, Li D, Deng Y, Yang X, Zhang F. Targeted analysis of six emerging derivatives or metabolites together with 25 common macrolides in milk using Quick, Easy, Cheap, Effective, Rugged and Safe extraction and ultra-performance liquid chromatography quadrupole/electrostaticfield orbitrap mass spectrometry. J Sep Sci 2020; 43:3719-3734. [PMID: 32725879 DOI: 10.1002/jssc.202000408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 11/07/2022]
Abstract
An analytical method for the determination of six emerging derivatives or metabolites together with 25 common macrolides antibiotics in milk by ultra-performance liquid chromatography quadrupole/electrostaticfield orbitrap mass spectrometry was established. The samples were purified with optimized Quick, Easy, Cheap, Effective, Rugged, Safe methods. The amounts of primary-secondary amine, C18, and sodium acetate adsorbent materials were optimized by response surface method to obtain the best purification effect. The chromatographic separation was carried out using the XBridge-C18 (2.1 × 100 mm, 3.5 µm, Waters) column with mobile phase of acetonitrile with 0.1% v/v formic acid-water solutions (containing 10 mmol/L ammonium acetate), separated by gradient elution. The instrument was operated in the detection mode of electrospray positive and negative ions with Full MS/data dependent MS2 acquisition mode detection, external standard method was used for quantitative analysis. The limits of detection and limits of quantitation of 31 compounds were 0.1-0.5 µg/L and 0.5-2.0 µg/L, respectively. A total of 31 compounds performed a good linearity in the range of 1 to 200 µg/L, and the correlation coefficient was greater than 0.990. The spiked recoveries in milk samples were 81.07-110.1% and the relative standard deviation was less than 5.1%. The method was successful applied to actual sample testing in the market.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P. R. China.,School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, P. R. China
| | - Yun Ling
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P. R. China
| | - Weie Zhou
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P. R. China
| | - Donghui Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, P. R. China
| | - Yamei Deng
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P. R. China
| | - Xusheng Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P. R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P. R. China
| |
Collapse
|
9
|
Mohsenzadeh MS, Mohammadinejad A, Mohajeri SA. Simple and selective analysis of different antibiotics in milk using molecularly imprinted polymers: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1959-1974. [DOI: 10.1080/19440049.2018.1508889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mahdieh Sadat Mohsenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Mohammadinejad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry, Payame Noor University, Tehran, I.R. of Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Arsic B, Barber J, Čikoš A, Mladenovic M, Stankovic N, Novak P. 16-membered macrolide antibiotics: a review. Int J Antimicrob Agents 2018; 51:283-298. [DOI: 10.1016/j.ijantimicag.2017.05.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022]
|
11
|
Bitas D, Samanidou V. Molecularly Imprinted Polymers as Extracting Media for the Chromatographic Determination of Antibiotics in Milk. Molecules 2018; 23:E316. [PMID: 29393877 PMCID: PMC6017535 DOI: 10.3390/molecules23020316] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
Milk-producing animals are typically kept stationary in overcrowded large-scale farms and in most cases under unsanitary conditions, which promotes the development of infections. In order to maintain sufficient health status among the herd or promote growth and increase production, farmers administer preventative antibiotic doses to the animals through their feed. However, many antibiotics used in cattle farms are intended for the treatment of bacterial infections in humans. This results in the development of antibiotic-resistant bacteria which pose a great risk for public health. Additionally, antibiotic residues are found in milk and dairy products, with potential toxic effects for the consumers. Hence the need of antibiotic residues monitoring in milk arises. Analytical methods were developed for the determination of antibiotics in milk, with key priority given to the analyte extraction and preconcentration step. Extraction can benefit from the production of molecularly imprinted polymers (MIPs) that can be applied as sorbents for the extraction of specific antibiotics. This review focuses on the principals of molecular imprinting technology and synthesis methods of MIPs, as well as the application of MIPs and MIPs composites for the chromatographic determination of various antibiotic categories in milk found in the recent literature.
Collapse
Affiliation(s)
- Dimitrios Bitas
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
12
|
Wang Z, Beier RC, Shen J. Immunoassays for the detection of macrocyclic lactones in food matrices – A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal Chim Acta 2017; 974:1-26. [PMID: 28535878 DOI: 10.1016/j.aca.2017.04.042] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/12/2023]
Abstract
This paper presents an overview of the recent applications of molecularly imprinted polymers (MIPs) to sample preparation. The review is thought to cover analytical procedures for extraction of contaminants (mainly illegal/noxious organic compounds) from food and environmental matrices, with a particular focus on the various pre-concentration/cleanup techniques, that is offline and online solid-phase extraction (SPE), dispersive SPE (d-SPE), magnetic SPE (MSPE), solid-phase microextraction (SPME) and stir-bar sorptive extraction (SBSE), applied before instrumental quantification. The selectivity and extraction efficiency of MIP-based sorbent phases are critically discussed, also in relation to the physical-chemical properties resulting from the synthetic procedures. A variety of molecularly imprinted sorbents is presented, including hybrid composites embedding carbon nanomaterials and ionic liquids. The analytical performance of MIP materials in sample preparation is commented as function of the complexity of the matrix, and it is compared to that exhibited by (commercial) aspecific and/or immunosorbent phases.
Collapse
Affiliation(s)
- Andrea Speltini
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| | - Andrea Scalabrini
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Federica Maraschi
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Michela Sturini
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Antonella Profumo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|