1
|
Younes M, Aquilina G, Degen G, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Passamonti S, Moldeus P, Shah R, Waalkens‐Berendsen I, Wright M, Barat Baviera JM, Gott D, Herman L, Leblanc J, Wölfle D, Entrena JA, Consuelo C, Mech A, Multari S, Palaniappan V, Ruggeri L, Smeraldi C, Tard A, Castle L. Safety evaluation of the food additive steviol glycosides, predominantly Rebaudioside M, produced by fermentation using Yarrowia lipolyticaVRM. EFSA J 2023; 21:e8387. [PMID: 38125973 PMCID: PMC10731492 DOI: 10.2903/j.efsa.2023.8387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The EFSA Panel on Food Additive and Flavourings (FAF Panel) provides a scientific opinion on the safety of a new process to produce steviol glycosides by fermentation of simple sugars using a genetically modified strain of Yarrowia lipolytica (named Y. lipolytica VRM). The manufacturing process may result in impurities different from those that may be present in the other steviol glycosides E 960a-d, therefore the Panel concluded that separate specifications are required for the food additive produced as described in the current application. Viable cells and DNA from the production strain are not present in the final product. The Panel considered that the demonstration of the absence of kaurenoic acid in the proposed food additive, using a method with a limit of detection (LOD) of 0.3 mg/kg, is adequate to dispel the concerns for potential genotoxicity. Given that all steviol glycosides follow the same metabolic pathways, the Panel considered that the current steviol glycosides would fall within the same group of substances. Therefore, the Panel considered that the already existing data on rebaudioside M and structurally related steviol glycosides are sufficient, and a similar metabolic fate and toxicity is expected for the food additive. The results from the bacterial reverse mutation assay and the in vitro micronucleus assay were negative and indicated absence of genotoxicity from the food additive. The existing acceptable daily intake (ADI) of 4 mg/kg body weight (bw) per day, expressed as steviol equivalents, was considered to be applicable to the proposed food additive. The Panel concluded that there is no safety concern for steviol glycosides, predominantly Rebaudioside M, produced by fermentation using Y. lipolytica VRM, to be used as a food additive at the proposed uses and use levels.
Collapse
|
2
|
Perli T, Borodina I, Daran JM. Engineering of molybdenum-cofactor-dependent nitrate assimilation in Yarrowia lipolytica. FEMS Yeast Res 2021; 21:6370176. [PMID: 34519821 PMCID: PMC8456426 DOI: 10.1093/femsyr/foab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Engineering a new metabolic function in a microbial host can be limited by the availability of the relevant cofactor. For instance, in Yarrowia lipolytica, the expression of a functional nitrate reductase is precluded by the absence of molybdenum cofactor (Moco) biosynthesis. In this study, we demonstrated that the Ogataea parapolymorpha Moco biosynthesis pathway combined with the expression of a high affinity molybdate transporter could lead to the synthesis of Moco in Y. lipolytica. The functionality of Moco was demonstrated by expression of an active Moco-dependent nitrate assimilation pathway from the same yeast donor, O. parapolymorpha. In addition to 11 heterologous genes, fast growth on nitrate required adaptive laboratory evolution which, resulted in up to 100-fold increase in nitrate reductase activity and in up to 4-fold increase in growth rate, reaching 0.13h-1. Genome sequencing of evolved isolates revealed the presence of a limited number of non-synonymous mutations or small insertions/deletions in annotated coding sequences. This study that builds up on a previous work establishing Moco synthesis in S. cerevisiae demonstrated that the Moco pathway could be successfully transferred in very distant yeasts and, potentially, to any other genera, which would enable the expression of new enzyme families and expand the nutrient range used by industrial yeasts.
Collapse
Affiliation(s)
- Thomas Perli
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
3
|
Lea IA, Chappell GA, Wikoff DS. Overall lack of genotoxic activity among five common low- and no-calorie sweeteners: A contemporary review of the collective evidence. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503389. [PMID: 34454695 DOI: 10.1016/j.mrgentox.2021.503389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Low- and no-calorie sweeteners (LNCS) are food additives that have been widely consumed for many decades. Their safety has been well established by authoritative bodies globally and is re-evaluated periodically. The objective herein was to survey and summarize the genotoxicity potential of five commonly utilized LNCS: acesulfame potassium (Ace-K), aspartame, saccharin, steviol glycosides and sucralose. Data from peer-reviewed literature and the ToxCast/Tox21 database were evaluated and integrated with the most recent weight-of-evidence evaluations from authoritative sources. Emphasis was placed on assays most frequently considered for hazard identification and risk assessment: mutation, clastogenicity and/or aneugenicity, and indirect DNA damage, such as changes in DNA repair mechanisms or gene expression data. These five sweeteners have been collectively evaluated in hundreds of in vivo or in vitro studies that employ numerous testing models, many of which have been conducted according to specific testing guidelines. The weight-of-evidence demonstrates overall negative findings across assay types for each sweetener when considering the totality of study design, reliability and reporting quality, as well as the lack of carcinogenic responses (or lack of responses relevant to humans) in animal cancer bioassays as well as observational studies in humans. This conclusion is consistent with the opinions of authoritative sources that have consistently determined that these sweeteners lack mutagenic and genotoxic potential.
Collapse
|
4
|
Chappell GA, Heintz MM, Borghoff SJ, Doepker CL, Wikoff DS. Lack of potential carcinogenicity for steviol glycosides - Systematic evaluation and integration of mechanistic data into the totality of evidence. Food Chem Toxicol 2021; 150:112045. [PMID: 33587976 DOI: 10.1016/j.fct.2021.112045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Steviol glycosides are present in the leaves of the Stevia rebaudiana plant, have a sweet taste, and have been used as a sweetener for centuries. To build on previous authoritative safety assessments of steviol glycosides, a systematic assessment of mechanistic data related to key characteristics of carcinogens (KCCs) was conducted. Over 900 KCC-relevant endpoints from peer-reviewed literature and high-throughput screening data (ToxCast/Tox21) were identified across individual steviol glycosides and derivatives, metabolites, and whole leaf extracts. Most data (both in vivo and in vitro, including human cells), showed inactivity. Studies were weighted according to quality and relevance. Although data were available for eight of the ten KCC, genotoxicity, oxidative stress, inflammation, and cell proliferation/cell death represent the KCCs with the most data. The data for these KCC primarily show beneficial activity (anti-inflammatory, antioxidant, and anti-proliferative). Following integration across all data, and accounting for study quality and relevance, the totality of the evidence demonstrated an overall lack of genotoxic and carcinogenic activity for steviol glycosides. This is in agreement with previous regulatory decisions, and is consistent with the lack of tumor response in two-year rodent cancer bioassays. The findings support prior conclusions that steviol glycosides are unlikely to be carcinogenic in humans.
Collapse
|
5
|
Samuel P, Ayoob KT, Magnuson BA, Wölwer-Rieck U, Jeppesen PB, Rogers PJ, Rowland I, Mathews R. Stevia Leaf to Stevia Sweetener: Exploring Its Science, Benefits, and Future Potential. J Nutr 2018; 148:1186S-1205S. [PMID: 29982648 DOI: 10.1093/jn/nxy102] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Steviol glycoside sweeteners are extracted and purified from the Stevia rebaudiana Bertoni plant, a member of the Asteraceae (Compositae) family that is native to South America, where it has been used for its sweet properties for hundreds of years. With continued increasing rates of obesity, diabetes, and other related comorbidities, in conjunction with global public policies calling for reductions in sugar intake as a means to help curb these issues, low- and no-calorie sweeteners (LNCSs, also known as high-potency sweeteners) such as stevia are gaining interest among consumers and food manufacturers. This appeal is related to stevia being plant-based, zero calorie and with a sweet taste that is 50-350 times sweeter than sugar, making it an excellent choice for use in sugar- and calorie-reduced food and beverage products. Despite the fact that the safety of stevia has been affirmed by several food regulatory and safety authorities around the world, insufficient education about stevia's safety and benefits, including continuing concern with regard to the safety of LNCSs in general, deters health professionals and consumers from recommending or using stevia. Therefore, the aim of this review and the stevia symposium that preceded this review at the ASN's annual conference in 2017 was to examine, in a comprehensive manner, the state of the science for stevia, its safety and potential health benefits, and future research and application. Topics covered included metabolism, safety and acceptable intake, dietary exposure, impact on blood glucose and insulin concentrations, energy intake and weight management, blood pressure, dental caries, naturality and processing, taste and sensory properties, regulatory status, consumer insights, and market trends. Data for stevia are limited in the case of energy intake and weight management as well as for the gut microbiome; therefore, the broader literature on LNCSs was reviewed at the symposium and therefore is also included in this review.
Collapse
Affiliation(s)
| | - Keith T Ayoob
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | | | - Ursula Wölwer-Rieck
- Department of Bioanalytics/Food Chemistry, University of Bonn, Bonn, Germany
| | | | - Peter J Rogers
- School of Experimental Psychology, University of Bristol, Bristol, United Kingdom
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | | |
Collapse
|
6
|
Jiang J, Qi L, Wei Q, Shi F. Effects of daily exposure to saccharin sodium and rebaudioside A on the ovarian cycle and steroidogenesis in rats. Reprod Toxicol 2018; 76:35-45. [DOI: 10.1016/j.reprotox.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
|
7
|
Chen L, Sun P, Li Y, Yan M, Xu L, Chen K, Ouyang P. A fusion protein strategy for soluble expression of Stevia glycosyltransferase UGT76G1 in Escherichia coli. 3 Biotech 2017; 7:356. [PMID: 29038773 DOI: 10.1007/s13205-017-0943-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
The UDP-glucosyltransferase UGT76G1 from Stevia rebaudiana converts stevioside to rebaudioside A via a one-step glycosylation reaction, which increases the amount of sweet-tasting rebaudioside A and decreases the amount of stevioside that has a bitter aftertaste. This enzyme could, therefore, conceivably be used to improve the organoleptic properties of steviol glycosides and offer a cost-effective preparation of high-purity rebaudioside A. Producing soluble enzymes by overexpression is a prerequisite for large-scale biocatalysis. However, most of the UGT76G1 overexpressed in Escherichia coli is in inclusion bodies. In this study, three N-terminal fusion partners, 3'-phosphoadenosine-5'-phosphatase (CysQ), 2-keto-3-deoxy-6-phosphogluconate aldolase (EDA) and N-utilisation substance A (NusA), were tested to improve UGT76G1 expression and solubility in E. coli. Compared with the fusion-free protein, the solubility of UGT76G1 was increased 40% by fusion with CysQ, and the glucosyltransferase activity of the crude extract was increased 82%. This successful CysQ fusion strategy could be applied to enhance the expression and solubility of other plant-derived glucosyltransferases and presumably other unrelated proteins in the popular, convenient and cost-effective E. coli host.
Collapse
Affiliation(s)
- Liangliang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Ping Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
- Yichang Key Laboratory of Biocatalysis, China Three Gorges University, Yichang, 443002 China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Lin Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| |
Collapse
|
8
|
Uçar A, Yılmaz S, Yılmaz Ş, Kılıç MS. A research on the genotoxicity of stevia in human lymphocytes. Drug Chem Toxicol 2017; 41:221-224. [DOI: 10.1080/01480545.2017.1349135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aslı Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | - Serkan Yılmaz
- Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | - Şemsigül Yılmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Turkey
| | | |
Collapse
|