1
|
Bauri AK, Dionicio IC, Arellano ES, Jeyaraj JG, Foro S, Carcache de Blanco EJ. A New Rare Halogenated Depside from Lichen and Study of its Anti-Proliferative Activity. Chem Biodivers 2024; 21:e202301874. [PMID: 38488665 DOI: 10.1002/cbdv.202301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/24/2024]
Abstract
Lichens are a symbiotic association of algae and fungus, belonging to the family Parmeliaceae. Some lichen species are edible and used as an active ingredient for preparation of exotic spices as well as folklore medicine to cure different kinds of ailments. A specimen of lichen was collected from Munner in the Kerala State of South India for chemical profiling. Chemical analyses of the diethyl ether extract of the defatted lichen led to the isolation of six phenols 1-6 with variation of relative abundance. Amongst them, the relative abundance of compound 3 was the greatest (1 % of crude extract) and it was identified as atranorin. The structures of known compounds were confirmed by comparison of their 1H-NMR, 13C NMR, and mass data with published values available in the literature. In vitro bioassay for anti-proliferative activity of these compounds has been conducted against various human cancer cell lines in comparison with paclitaxel as control using SRB assay. Interestingly, a new compound 5 was found along with previously reported compounds from this lichen. This new compound was designated as fluoroatranorin 5 which was reported for the first time herein. The structural characterization of a new depside was determined by spectral methods such as 1H-NMR, 13C NMR, 19F NMR, IR, LC-HRESI-MS, and LC-MS/MS study. Its structure was confirmed by single crystal X-ray diffraction study. This new compound was designated as fluoroatranorin 5 which was reported first time herein. Anti-proliferative activity of all these compounds was evaluated against six different cancer cell lines. The inhibitory activity, IC50 value of compounds 1-3 and 5 exhibited at 99.64, 102.04, 109.20, 53.0 and 2.4 μM on cancer cell lines HT-29 (colon), Hela (cervical), HT-29, HPAC (pancreas) and A2780 (ovarian cancer cell line) respectively in comparison with paclitaxel as control. The new compound 5 exhibited significant activity with IC50 value 2.4 μM on A2780 ovarian cancer cell line.
Collapse
Affiliation(s)
- Ajoy K Bauri
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | | | | | - Jonathan G Jeyaraj
- College of Pharmacy, The Ohio State University, Ohio, Columbus, OH-43210, USA
| | - Sabine Foro
- Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany
| | | |
Collapse
|
2
|
Torres-Benítez A, Ortega-Valencia JE, Hillmann-Eggers M, Sanchez M, Pereira I, Gómez-Serranillos MP, Simirgiotis MJ. Chemical composition and antioxidant, enzyme inhibition and cytoprotective activity of two Antarctic lichens of the genus Psoroma (Pannariaceae). Nat Prod Res 2024:1-14. [PMID: 38813688 DOI: 10.1080/14786419.2024.2360150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Lichens contain different types of chemical compounds with multiple biological activities that demonstrate their potential pharmacological use. This research aims to report the metabolomic identification of the ethanolic extracts of P. antarcticum and P. hypnorum, their antioxidant, enzyme inhibitory, and their cytoprotection activity. Sixteen metabolites were identified in P. antarcticum and twelve in P. hypnorum; the extracts reported variable antioxidant activity with IC50 >350 µg/mL in DPPH·, values >18 µmol Trolox/g in ORAC and >40 µmol Trolox/g in FRAP and a phenolic compound content >10 mg GAE/g, as well as significant results in cholinesterases, α-glucosidase, pancreatic lipase, α-amylase, and tyrosinase enzyme inhibition activities with IC50 ranging from 18 to 510 µg/mL, and which were complemented by molecular docking experiments. Both extracts showed improved cytoprotection at the concentrations of 0.5 to 1.0 μg/mL. This study contributes to the knowledge of the chemical diversity of Antarctic lichen extracts and their effectiveness in the evaluation of biological activities related to neurodegenerative diseases and metabolic syndrome.
Collapse
Affiliation(s)
- Alfredo Torres-Benítez
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Marta Sanchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Iris Pereira
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
3
|
Queffelec J, Flórez-Fernández N, Torres MD, Domínguez H. Evernia prunastri lichen as a source of bioactive glucans with potential for topical applications. Int J Biol Macromol 2024; 258:128859. [PMID: 38134984 DOI: 10.1016/j.ijbiomac.2023.128859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Microwave hydrothermal treatment was selected to extract valuable fractions with bioactive and gelling properties from Evernia prunastri lichen with potential for topical applications. The impact of the extraction processing conditions on the soluble extracts, mucilage fraction and residual solid phase was analyzed within a lichen global valorization approach. A particular stress was made on the thermo-rheological and structural characteristics of the extracted glucan and galactomannan polymers, the corresponding gelled matrices, and their cosmetic feasibility. Results revealed that the proposed microwave-assisted treatment showed a relevant influence on the phytochemical features of the aqueous soluble extracts, accounting the major protein content at 120 °C and the enhanced antioxidant and anti-tyrosinase properties at 140 °C. Extracts at 200 °C showed the highest anti-inflammatory (COX-1 and COX-2 inhibition) efficacies. The biopolymer analyses indicated that those recovered after lichen hydrothermal treatment at 160 °C featured a good extraction performance, the highest molecular weight, apparent viscosity, and antiproliferative potential. The thermo-rheological properties of the corresponding matrices formulated at 10 % and 60 or 80 °C exhibited the strongest and most thermo-reversible characteristics, as well as antifreezing feasibility. Another advantage of the selected fractions was the absence of skin irritation according to the in vitro skin irritation assay.
Collapse
Affiliation(s)
- J Queffelec
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| | - N Flórez-Fernández
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| | - M D Torres
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain.
| | - H Domínguez
- CINBIO, Universidade de Vigo, Department of Chemical Engineering, 32004 Ourense, Spain
| |
Collapse
|
4
|
Studzińska-Sroka E, Bulicz M, Henkel M, Rosiak N, Paczkowska-Walendowska M, Szwajgier D, Baranowska-Wójcik E, Korybalska K, Cielecka-Piontek J. Pleiotropic Potential of Evernia prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2023; 29:233. [PMID: 38202817 PMCID: PMC10780513 DOI: 10.3390/molecules29010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Evernia prunastri is a lichen widely distributed in the Northern Hemisphere. Its biological properties still need to be discovered. Therefore, our paper focuses on studies of E. prunastri extracts, including its main metabolites evernic acid (EA) or atranorin (ATR). Phytochemical profiles using chromatographic analysis were confirmed. The antioxidant activity was evaluated using in vitro chemical tests and in vitro enzymatic cells-free tests, namely superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). The anti-inflammatory potential using cyclooxygenase-2 (COX-2) and hyaluronidase were determined. The neuroprotective potential using acetylcholinesterase, (AChE), butyrylcholinesterase (BChE), and tyrosinase (Tyr) was estimated. The hypoglycemic activity was also confirmed (α-glucosidase). Principal component analysis was performed to determine the relationship between the biological activity of extracts. The inhibitory effect of EA and ATR on COX-2 AChE, BChE, Tyr, and α-glucosidase was evaluated using molecular docking techniques and confirmed for EA and ATR (besides α-glucosidase). The penetration of EA and ATR from extracts through the blood-brain barrier was confirmed using the parallel artificial membrane permeability assay blood-brain barrier test. In conclusion, depending on chemical surroundings and the concentration, the E. prunastri extracts, EA or ATR, showed attractive pleiotropic properties, which should be further investigated.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Bulicz
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Marika Henkel
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str., 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Katarzyna Korybalska
- Department of Patophysiology, Poznan University of Medical Science, Rokietnicka 8 Str., 60-806 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.B.); (M.H.); (N.R.); (M.P.-W.); (J.C.-P.)
| |
Collapse
|
5
|
Torres-Benítez A, Ortega-Valencia JE, Jara-Pinuer N, Sanchez M, Vargas-Arana G, Gómez-Serranillos MP, Simirgiotis MJ. Antioxidant and antidiabetic activity and phytoconstituents of lichen extracts with temperate and polar distribution. Front Pharmacol 2023; 14:1251856. [PMID: 38026927 PMCID: PMC10646315 DOI: 10.3389/fphar.2023.1251856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this research was to characterize the chemical composition of ethanolic extracts of the lichen species Placopsis contortuplicata, Ochrolechia frigida, and Umbilicaria antarctica, their antioxidant activity, and enzymatic inhibition through in vitro and molecular docking analysis. In total phenol content, FRAP, ORAC, and DPPH assays, the extracts showed significant antioxidant activity, and in in vitro assays for the inhibition of pancreatic lipase, α-glucosidase, and α-amylase enzymes, together with in silico studies for the prediction of pharmacokinetic properties, toxicity risks, and intermolecular interactions of compounds, the extracts evidenced inhibitory potential. A total of 13 compounds were identified by UHPLC-ESI-QTOF-MS in P. contortuplicata, 18 compounds in O. frigida, and 12 compounds in U. antarctica. This study contributes to the knowledge of the pool of bioactive compounds present in lichens of temperate and polar distribution and biological characteristics that increase interest in the discovery of natural products that offer alternatives for treatment studies of diseases related to oxidative stress and metabolic syndrome.
Collapse
Affiliation(s)
- Alfredo Torres-Benítez
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Nicolás Jara-Pinuer
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Sanchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Gabriel Vargas-Arana
- Laboratorio de Química de Productos Naturales, Instituto de Investigaciones de la Amazonía Peruana, Avenue Abelardo Quiñones, Iquitos, Peru
- Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos, Peru
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Poulsen-Silva E, Gordillo-Fuenzalida F, Atala C, Moreno AA, Otero MC. Bioactive Lichen Secondary Metabolites and Their Presence in Species from Chile. Metabolites 2023; 13:805. [PMID: 37512512 PMCID: PMC10383681 DOI: 10.3390/metabo13070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Lichens are symbiotic organisms composed of at least one fungal and one algal species. They are found in different environments around the world, even in the poles and deserts. Some species can withstand extreme abiotic conditions, including radiation and the vacuum of space. Their chemistry is mainly due to the fungal metabolism and the production of several secondary metabolites with biological activity, which have been isolated due to an increasing interest from the pharmaceutical community. However, beyond the experimental data, little is known about their mechanisms of action and the potential pharmaceutical use of these kinds of molecules, especially the ones isolated from lesser-known species and/or lesser-studied countries. The main objective of this review is to analyze the bibliographical data of the biological activity of secondary metabolites from lichens, identifying the possible mechanisms of action and lichen species from Chile. We carried out a bibliographic revision of different scientific articles in order to collect all necessary information on the biological activity of the metabolites of these lichen species. For this, validated databases were used. We found the most recent reports where in vitro and in vivo studies have demonstrated the biological properties of these metabolites. The biological activity, namely anticancer, antioxidant, and anti-inflammatory activity, of 26 secondary metabolites are described, as well as their reported molecular mechanisms. The most notable metabolites found in this review were usnic acid, atranorin, protolichesterinic acid, and lobaric acid. Usnic acid was the most investigated metabolite, in addition to undergoing toxicological and pharmacological studies, where a hepatotoxicity effect was reported due to uncoupling oxidative phosphorylation. Additionally, no major studies have been made to validate the pharmacological application of these metabolites, and few advancements have been made in their artificial growth in bioreactors. Despite the described biological activities, there is little support to consider these metabolites in pharmaceutical formulations or to evaluate them in clinical trials. Nevertheless, it is important to carry out further studies regarding their possible human health effects. These lichen secondary metabolites present a promising research opportunity to find new pharmaceutical molecules due to their bioactive properties.
Collapse
Affiliation(s)
- Erick Poulsen-Silva
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8320000, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca 3466706, Chile
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Av. Universidad 330, Curauma, Valparaíso 2373223, Chile
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago 8320000, Chile
| |
Collapse
|
7
|
Ureña-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. Lichen Depsides and Tridepsides: Progress in Pharmacological Approaches. J Fungi (Basel) 2023; 9:116. [PMID: 36675938 PMCID: PMC9866793 DOI: 10.3390/jof9010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Depsides and tridepsides are secondary metabolites found in lichens. In the last 10 years, there has been a growing interest in the pharmacological activity of these compounds. This review aims to discuss the research findings related to the biological effects and mechanisms of action of lichen depsides and tridepsides. The most studied compound is atranorin, followed by gyrophoric acid, diffractaic acid, and lecanoric acid. Antioxidant, cytotoxic, and antimicrobial activities are among the most investigated activities, mainly in in vitro studies, with occasional in silico and in vivo studies. Clinical trials have not been conducted using depsides and tridepsides. Therefore, future research should focus on conducting more in vivo work and clinical trials, as well as on evaluating the other activities. Moreover, despite the significant increase in research work on the pharmacology of depsides and tridepsides, there are many of these compounds which have yet to be investigated (e.g., hiascic acid, lassalic acid, ovoic acid, crustinic acid, and hypothamnolic acid).
Collapse
Affiliation(s)
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | - María Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
8
|
Adenubi OT, Famuyide IM, McGaw LJ, Eloff JN. Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115657. [PMID: 36007717 DOI: 10.1016/j.jep.2022.115657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lichens, a unique symbiotic association between an alga/cyanobacterium and a fungus, produce secondary metabolites that are a promising source of novel drug leads. The beauty and importance of lichens have not been adequately explored despite their manifold biological activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, analgesic, antipyretic and antiparasitic. AIM OF THE STUDY The present review collates and discusses the available knowledge on secondary metabolites and biological activities of lichens (in vitro and in vivo). MATERIALS AND METHODS Using relevant keywords (lichens, secondary metabolites, bioactivity, pharmacological activities), five electronic databases, namely ScienceDirect, PubMed, Google Scholar, Scopus and Recent Literature on Lichens, were searched for past and current scientific contributions up until May 2022. Literature focusing broadly on the bioactivity of lichens including their secondary metabolites were identified and summarized. RESULTS A total of 50 review articles and 189 research articles were searched. Information related to antioxidant, antimicrobial, anti-inflammatory, anticancer and insecticidal activities of 90 lichen species (from 13 families) and 12 isolated metabolites are reported. Over 90% of the studies comprised in vitro investigations, such as bioassays evaluating radical scavenging properties, lipid peroxidation inhibition and reducing power, cytotoxicity and antimicrobial bioassays of lichen species and constituents. In vivo studies were scarce and available only in fish and rats. Most of the studies were done by research groups in Brazil, France, Serbia, India and Turkey. There were relatively few reports from Asia and Africa despite the ubiquitous nature of lichens and the high occurrence in these continents. CONCLUSION Secondary metabolites from lichens are worthy of further investigation in terms of their potential therapeutic applicability, including better understanding of their mechanism(s) of action. This would be of great importance in the search for novel drugs.
Collapse
Affiliation(s)
- Olubukola Tolulope Adenubi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
| | - Ibukun Michael Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| | - Jacobus Nicolaas Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, 0110, South Africa.
| |
Collapse
|
9
|
Wang H, Xuan M, Huang C, Wang C. Advances in Research on Bioactivity, Toxicity, Metabolism, and Pharmacokinetics of Usnic Acid In Vitro and In Vivo. Molecules 2022; 27:7469. [PMID: 36364296 PMCID: PMC9657990 DOI: 10.3390/molecules27217469] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2023] Open
Abstract
Lichens are among the most widely distributed plants on earth and have the longest growth cycle. Usnic acid is an abundant characteristic secondary metabolite of lichens and the earliest lichen compound used commercially. It has diverse pharmacological activities, such as anti-inflammatory, antibacterial, antiviral, anticancer, antioxidant, and photoprotective effects, and promotes wound healing. It is widely used in dietary supplements, daily chemical products (fodder, dyes, food, perfumery, and cosmetics), and medicine. However, some studies have found that usnic acid can cause allergic dermatitis and drug-induced liver injury. In this paper, the bioactivity, toxicity, in vivo and in vitro metabolism, and pharmacokinetics of usnic acid were summarized. The aims were to develop and utilize usnic acid and provide reference for its future research.
Collapse
Affiliation(s)
- Hanxue Wang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Min Xuan
- Department of Pharmacy, Qingdao Eighth People’s Hospital, 84 Fengshan Road, Qingdao 266121, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory for TCM Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
10
|
Lichen Extracts from Cetrarioid Clade Provide Neuroprotection against Hydrogen Peroxide-Induced Oxidative Stress. Molecules 2022; 27:molecules27196520. [PMID: 36235056 PMCID: PMC9573381 DOI: 10.3390/molecules27196520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress is involved in the pathophysiology of many neurodegenerative diseases. Lichens have antioxidant properties attributed to their own secondary metabolites with phenol groups. Very few studies delve into the protective capacity of lichens based on their antioxidant properties and their action mechanism. The present study evaluates the neuroprotective role of Dactylina arctica, Nephromopsis stracheyi, Tuckermannopsis americana and Vulpicida pinastri methanol extracts in a hydrogen peroxide (H2O2) oxidative stress model in neuroblastoma cell line "SH-SY5Y cells". Cells were pretreated with different concentrations of lichen extracts (24 h) before H2O2 (250 µM, 1 h). Our results showed that D. arctica (10 µg/mL), N. stracheyi (25 µg/mL), T. americana (50 µg/mL) and V. pinastri (5 µg/mL) prevented cell death and morphological changes. Moreover, these lichens significantly inhibited reactive oxygen species (ROS) production and lipid peroxidation and increased superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) levels. Furthermore, they attenuated mitochondrial membrane potential decline and calcium homeostasis disruption. Finally, high-performance liquid chromatography (HPLC) analysis revealed that the secondary metabolites were gyrophoric acid and lecanoric acid in D. artica, usnic acid, pinastric acid and vulpinic acid in V. pinastri, and alectoronic acid in T. americana. In conclusion, D. arctica and V. pinastri are the most promising lichens to prevent and to treat oxidative stress-related neurodegenerative diseases.
Collapse
|
11
|
Sánchez M, Ureña-Vacas I, González-Burgos E, Divakar PK, Gómez-Serranillos MP. The Genus Cetraria s. str.-A Review of Its Botany, Phytochemistry, Traditional Uses and Pharmacology. Molecules 2022; 27:molecules27154990. [PMID: 35956939 PMCID: PMC9370490 DOI: 10.3390/molecules27154990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Cetraria s. str. (Parmeliaceae family, Cetrarioid clade) consists of 15 species of mostly erect brown or greenish yellow fruticose or subfoliose thallus. These Cetraria species have a cosmopolitan distribution, being primarily located in the Northern Hemisphere, in North America and in the Eurasia area. Phytochemical analysis has demonstrated the presence of dibenzofuran derivatives (usnic acid), depsidones (fumarprotocetraric and protocetraric acids) and fatty acids (lichesterinic and protolichesterinic acids). The species of Cetraria, and more particularly Cetraria islandica, has been widely employed in folk medicine for the treatment of digestive and respiratory diseases as decoctions, tinctures, aqueous extract, and infusions. Moreover, Cetraria islandica has had an important nutritional and cosmetic value. These traditional uses have been validated in in vitro and in vivo pharmacological studies. Additionally, new therapeutic activities are being investigated, such as antioxidant, immunomodulatory, cytotoxic, genotoxic and antigenotoxic. Among all Cetraria species, the most investigated by far has been Cetraria islandica, followed by Cetraria pinastri and Cetraria aculeata. The aim of the current review is to update all the knowledge about the genus Cetraria covering aspects that include taxonomy and phylogeny, morphology and distribution, ecological and environmental interest, phytochemistry, traditional uses and pharmacological properties.
Collapse
|
12
|
Srimani S, Schmidt CX, Gómez-Serranillos MP, Oster H, Divakar PK. Modulation of Cellular Circadian Rhythms by Secondary Metabolites of Lichens. Front Cell Neurosci 2022; 16:907308. [PMID: 35813500 PMCID: PMC9260025 DOI: 10.3389/fncel.2022.907308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Background Most mammalian cells harbor molecular circadian clocks that synchronize physiological functions with the 24-h day-night cycle. Disruption of circadian rhythms, through genetic or environmental changes, promotes the development of disorders like obesity, cardiovascular diseases, and cancer. At the cellular level, circadian, mitotic, and redox cycles are functionally coupled. Evernic (EA) and usnic acid (UA), two lichen secondary metabolites, show various pharmacological activities including anti-oxidative, anti-inflammatory, and neuroprotective action. All these effects have likewise been associated with a functional circadian clock. Hypothesis/Purpose To test, if the lichen compounds EA and UA modulate circadian clock function at the cellular level. Methods We used three different cell lines and two circadian luminescence reporter systems for evaluating dose- and time-dependent effects of EA/UA treatment on cellular clock regulation at high temporal resolution. Output parameters studied were circadian luminescence rhythm period, amplitude, phase, and dampening rate. Results Both compounds had marked effects on clock rhythm amplitudes and dampening independent of cell type, with UA generally showing a higher efficiency than EA. Only in fibroblast cells, significant effects on clock period were observed for UA treated cells showing shorter and EA treated cells showing longer period lengths. Transient treatment of mouse embryonic fibroblasts at different phases had only minor clock resetting effects for both compounds. Conclusion Secondary metabolites of lichen alter cellular circadian clocks through amplitude reduction and increased rhythm dampening.
Collapse
Affiliation(s)
- Soumi Srimani
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Cosima Xenia Schmidt
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Maria Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Pradeep K. Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Phytochemical Characterization and Pharmacological Properties of Lichen Extracts from Cetrarioid Clade by Multivariate Analysis and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5218248. [PMID: 35692577 PMCID: PMC9187481 DOI: 10.1155/2022/5218248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
Introduction Lichens, due to the presence of own secondary metabolites such as depsidones and depsides, became a promising source of health-promoting organisms with pharmacological activities. However, lichens and their active compounds have been much less studied. Therefore, the present study aims to evaluate for the first time the antioxidant capacity and enzyme inhibitory activities of 14 lichen extracts belonging to cetrarioid clade in order to identify new natural products with potential pharmacological activity. Materials and Methods In this study, an integrated strategy was applied combining multivariate statistical analysis (principal component analysis and hierarchical cluster analysis), phytochemical identification, activity evaluation (in vitro battery of antioxidant assays FRAP, DPPH, and ORAC), and enzyme inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and molecular profiling with in silico docking studies of the most promising secondary metabolites. Results. Among fourteen lichen samples, Dactylina arctica stands out for its higher antioxidant capacities, followed by Nephromopsis stracheyi, Tuckermannopsis americana, Vulpicida pinastri, and Asahinea scholanderi. Moreover, Asahinea scholanderi and Cetraria cucullata extracts were the best inhibitors of AChE and BuChE. The major secondary metabolites identified by HPLC were alectoronic acid and α-collatolic acid for Asahinea scholanderi and usnic acid and protolichesterinic acid for Cetraria cucullata. Molecular docking studies revealed that alectoronic acid exhibited the strongest binding affinity with both AChE and BuChE with and without water molecules. Conclusions Our results concluded that these species could be effective in the treatment of neurodegenerative diseases, being mandatory further investigation in cell culture and in vivo models.
Collapse
|
14
|
Singh SK, Mukerjee A, Gupta P, Kumar Tripathi A. Evaluation of Antigenotoxic Effect of Cinnamon Oil and Usnic Acid Blended Nanoemulsion on Swiss Albino Mice. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00902-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Studzińska-Sroka E, Majchrzak-Celińska A, Zalewski P, Szwajgier D, Baranowska-Wójcik E, Kaproń B, Plech T, Żarowski M, Cielecka-Piontek J. Lichen-Derived Compounds and Extracts as Biologically Active Substances with Anticancer and Neuroprotective Properties. Pharmaceuticals (Basel) 2021; 14:ph14121293. [PMID: 34959693 PMCID: PMC8704315 DOI: 10.3390/ph14121293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
Lichens are a source of chemical compounds with valuable biological properties, structurally predisposed to penetration into the central nervous system (CNS). Hence, our research aimed to examine the biological potential of lipophilic extracts of Parmelia sulcata, Evernia prunastri, Cladonia uncialis, and their major secondary metabolites, in the context of searching for new therapies for CNS diseases, mainly glioblastoma multiforme (GBM). The extracts selected for the study were standardized for their content of salazinic acid, evernic acid, and (−)-usnic acid, respectively. The extracts and lichen metabolites were evaluated in terms of their anti-tumor activity, i.e., cytotoxicity against A-172 and T98G cell lines and anti-IDO1, IDO2, TDO activity, their anti-inflammatory properties exerted by anti-COX-2 and anti-hyaluronidase activity, antioxidant activity, and anti-acetylcholinesterase and anti-butyrylcholinesterase activity. The results of this study indicate that lichen-derived compounds and extracts exert significant cytotoxicity against GBM cells, inhibit the kynurenine pathway enzymes, and have anti-inflammatory properties and weak antioxidant and anti-cholinesterase properties. Moreover, evernic acid and (−)-usnic acid were shown to be able to cross the blood-brain barrier. These results demonstrate that lichen-derived extracts and compounds, especially (−)-usnic acid, can be regarded as prototypes of pharmacologically active compounds within the CNS, especially suitable for the treatment of GBM.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
- Correspondence:
| | - Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
| |
Collapse
|
16
|
Shcherbakova A, Strömstedt AA, Göransson U, Gnezdilov O, Turanov A, Boldbaatar D, Kochkin D, Ulrich-Merzenich G, Koptina A. Antimicrobial and antioxidant activity of Evernia prunastri extracts and their isolates. World J Microbiol Biotechnol 2021; 37:129. [PMID: 34232401 PMCID: PMC8263414 DOI: 10.1007/s11274-021-03099-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
Lichens are symbiotic organisms formed by a fungus and one or more photosynthetic partners which are usually alga or cyanobacterium. Their diverse and scarcely studied metabolites facilitate adaptability to extreme living conditions. We investigated Evernia prunastri (L.) Ach., a widely distributed lichen, for its antimicrobial and antioxidant potential. E. prunastri was sequentially extracted by hexane (Hex), dichloromethane (DCM) and acetonitrile (ACN) that were screened for their antioxidant and antimicrobial (against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans) activities. The Hex extract possessed the highest antioxidant capacity (87 mg ascorbic acid/g extract) corresponding to the highest content of phenols (73 mg gallic acid/g extract). The DCM and Hex extracts were both active against S. aureus (MICs of 4 and 21 µg/ml, respectively) but were less active against Gram-negative bacteria and yeast. The ACN extract exhibited activity on both S. aureus (MIC 14 µg/ml) and C. albicans (MIC 38 µg/ml) and was therefore further fractionated by silica gel column chromatography. The active compound of the most potent fraction was subsequently characterized by 1H and 13C-NMR spectroscopy and identified as evernic acid. Structural similarity analyses were performed between compounds from E. prunastri and known antibiotics from different classes. The structural similarity was not present. Antioxidant and antimicrobial activities of E. prunastri extracts originate from multiple chemical compounds; besides usnic acid, most notably evernic acid and derivatives thereof. Evernic acid and its derivatives represent possible candidates for a new class of antibiotics.
Collapse
Affiliation(s)
- A Shcherbakova
- Volga State University of Technology, Lenin Sq., 3, Yoshkar-Ola, Russia, 424000
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
- Medical Clinic III, AG Synergy Research and Experimental Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - A A Strömstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
| | - U Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
| | - O Gnezdilov
- FRC Kazan Scientific Center, Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Sibirsky Tract, 10/7, Kazan, Russia, 420029
| | - A Turanov
- FRC Kazan Scientific Center, Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Sibirsky Tract, 10/7, Kazan, Russia, 420029
| | - D Boldbaatar
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden
- The Liver Center, Dalai Tower, Unesco Street 31, Sukhbaatar District, Ulaanbaatar, 14230, Mongolia
| | - D Kochkin
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, 1-12 Leninskiye Gory, Moscow, Russia, 119234
| | - G Ulrich-Merzenich
- Medical Clinic III, AG Synergy Research and Experimental Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - A Koptina
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.
| |
Collapse
|
17
|
Mapari S, Gaikwad S, Khare R, Syed M, Doshi P, Behera BC. Neuroprotective potential of selected lichen compounds on mouse neuroblastoma (N2a) cells. EXCLI JOURNAL 2021; 20:491-494. [PMID: 33883977 PMCID: PMC8056060 DOI: 10.17179/excli2020-3130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Sachin Mapari
- Agharkar Research Institute, G.G. Agarkar Road, Pune, India
| | | | - Roshni Khare
- Agharkar Research Institute, G.G. Agarkar Road, Pune, India
| | - Muntjeeb Syed
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Pooja Doshi
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
18
|
Lee S, Suh YJ, Yang S, Hong DG, Ishigami A, Kim H, Hur JS, Chang SC, Lee J. Neuroprotective and Anti-Inflammatory Effects of Evernic Acid in an MPTP-Induced Parkinson's Disease Model. Int J Mol Sci 2021; 22:2098. [PMID: 33672606 PMCID: PMC7924051 DOI: 10.3390/ijms22042098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress, mitochondrial dysfunction, and neuroinflammation are strongly associated with the pathogenesis of Parkinson's disease (PD), which suggests that anti-oxidative and anti-inflammatory compounds might provide an alternative treatment for PD. Here, we evaluated the neuroprotective effects of evernic aid (EA), which was screened from a lichen library provided by the Korean Lichen Research Institute at Sunchon National University. EA is a secondary metabolite generated by lichens, including Ramalina, Evernia, and Hypogymnia, and several studies have described its anticancer, antifungal, and antimicrobial effects. However, the neuroprotective effects of EA have not been studied. We found that EA protected primary cultured neurons against 1-methyl-4-phenylpyridium (MPP+)-induced cell death, mitochondrial dysfunction, and oxidative stress, and effectively reduced MPP+-induced astroglial activation by inhibiting the NF-κB pathway. In vivo, EA ameliorated MPTP-induced motor dysfunction, dopaminergic neuronal loss, and neuroinflammation in the nigrostriatal pathway in C57BL/6 mice. Taken together, our findings demonstrate that EA has neuroprotective and anti-inflammatory effects in PD models and suggest that EA is a potential therapeutic candidate for PD.
Collapse
Affiliation(s)
- Seulah Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (S.Y.); (D.G.H.)
| | - Yeon Ji Suh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (S.Y.); (D.G.H.)
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (S.Y.); (D.G.H.)
| | - Dong Geun Hong
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (S.Y.); (D.G.H.)
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan;
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea;
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (Y.J.S.); (S.Y.); (D.G.H.)
| |
Collapse
|
19
|
Emsen B, Kolukisa AL. Cytogenetic and oxidative effects of three lichen extracts on human peripheral lymphocytes. ACTA ACUST UNITED AC 2020; 76:291-299. [PMID: 34218549 DOI: 10.1515/znc-2020-0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/01/2020] [Indexed: 11/15/2022]
Abstract
In the present study, we investigated cytogenetic and oxidative [total antioxidant capacity (TAC), total oxidant status (TOS)] effects of methanol and water extracts of Cladonia chlorophaea (Flörke ex Sommerf.) Sprengel, Dermatocarpon miniatum (L.) W.Mann and Parmelia saxatilis (L.) Ach. on cultured human lymphocytes. In addition, different phenolic compounds in the extracts were quantified by high performance liquid chromatography (HPLC) analysis. As a result of HPLC analysis, methanol extracts of all lichen species tested had higher phenolic compounds. Likewise, methanol extracts of each lichen increased TAC levels in lymphocytes more than water extracts. The TOS levels of the cells treated with different concentrations (1-100 mg/L) of the extracts decreased due to the increasing concentration of the extracts. Genotoxicity experiments revealed that the tested lichen extracts did not significantly increase (p > 0.05) the level of genotoxicity on human peripheral lymphocyte culture compared to the negative control group. The results showed that C. chlorophaea, D. miniatum and P. saxatilis lichens, which were found to be a rich source of phenolic compounds, might be of interest in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Bugrahan Emsen
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Ayse Levent Kolukisa
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
20
|
Erfani S, Valadbeigi T, Aboutaleb N, Karimi N, Moghimi A, Khaksari M. Usnic acid improves memory impairment after cerebral ischemia/reperfusion injuries by anti-neuroinflammatory, anti-oxidant, and anti-apoptotic properties. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1225-1231. [PMID: 32963745 PMCID: PMC7491502 DOI: 10.22038/ijbms.2020.43280.10165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective(s): Cerebral ischemia/reperfusion causes complex pathological mechanisms that lead to brain tissue damage. Usnic acid is a lichen secondary metabolite that has many different biological properties including anti-inflammatory and anti-oxidant activities. Therefore, the objective of the current study was to investigate the neuroprotective effects of usnic acid on apoptotic cell death, neuroinflammation, anti-oxidant enzyme activities, and oxidative stress levels after transient cerebral ischemia/reperfusion. Materials and Methods: Forty-two male Wistar rats were randomly assigned to three groups (sham, ischemia/reperfusion, and ischemia/reperfusion+usnic acid). Ischemia was induced by 20 min occlusion of common carotid arteries. Injection of usnic acid (25 mg/kg, intraperitoneally) and saline was done at the beginning of reperfusion time. Morris water maze was applied to assess spatial memory. The protein expression amount was measured using immunohistochemical and immunofluorescence staining. Spectrophotometric assay was performed to determine the levels of anti-oxidant enzymes. Results: Usnic acid significantly reduced caspase-3, glial fibrillary acidic protein- positive and ionized calcium-binding adaptor molecule 1-positive cells (P<0.001) and enhanced spatial memory disorders (P<0.05) due to brain ischemia. In addition, treatment with usnic acid improves effects in the antioxidant system following cerebral ischemia (P<0.05). Conclusion: Our findings indicate that usnic acid has neuroprotective properties, which possibly is applicable as a promising candidate for cerebral injuries caused by ischemia.
Collapse
Affiliation(s)
- Sohaila Erfani
- Department of Biology, Faculty of Science, Ilam University, Ilam, Iran
| | | | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University of Kermanshah, Kermanshah, Iran
| | - Ali Moghimi
- Rayan Center for Neuroscience and Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Khaksari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
21
|
Lee S, Lee Y, Ha S, Chung HY, Kim H, Hur JS, Lee J. Anti-inflammatory effects of usnic acid in an MPTP-induced mouse model of Parkinson's disease. Brain Res 2020; 1730:146642. [PMID: 31930999 DOI: 10.1016/j.brainres.2019.146642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Neuroinflammation is often associated with astrocyte and microglial activations particularly in Parkinson's disease (PD) and other brain damage such as Alzheimer's disease. Therefore, the modulation of glial activation offers a possible target for treating PD-associated pathologies. Here, we evaluated the neuroprotective effects of usnic acid, a naturally occurring dibenzofuran derivative found in several lichen species in an acute mouse model of PD. Male mice were administered with vehicle or usnic acid (5 or 25 mg/kg) for 10 consecutive days, and then on day 11, MPTP (20 mg/kg, i.p.) was administered four times (with 2hrs intervals between injections) to induce PD pathologies. It was found that MPTP-induced motor dysfunction and neuronal loss were ameliorated in the usnic acid-treated mice versus vehicle-treated controls. Further study revealed that usnic acid effectively inhibited MPP+-induced glial activation in primary astrocytes by blocking NF-κB activation. Taken together, these findings suggest that usnic acid could be considered potentially useful therapeutic candidates for PD and other neurodegenerative diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Seulah Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
22
|
Cetin Cakmak K, Gülçin İ. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicol Rep 2019; 6:1273-1280. [PMID: 31832335 PMCID: PMC6889762 DOI: 10.1016/j.toxrep.2019.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 11/29/2022] Open
Abstract
Usnic acid, as active dibenzofuran derivative, isolated and characterized from some lichen species. The aim of manuscript was to evaluate antioxidant, anticholinergic and antidiabetic potentials of usnic acid as an important natural product. Antioxidant profile of usnic acid determined by eight distinguishes bioanalytical antioxidant methods including 1,1-diphenyl-2-picrylhydrazyl (DPPH·), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS• +), superoxide anion radical (O2 • -) and N,N-dimethyl-p-phenylenediamine (DMPD• +) scavenging activities, cupric ion (Cu2+), ferric ion (Fe3+) and Fe3+-TPTZ reducing abilities and ferrous ion (Fe3+) chelating activity. Usnic acid was found as potent DPPH· (IC50: 49.50 μg/mL), DMPD• + (IC50: 33.00 μg/mL), O2 • - (IC50: 18.68 μg/mL), and ABTS• + (IC50: 10.41 μg/mL) scavenging effects. Also, the inhibition effects of usnic acid were tested against some metabolic enzymes including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) linked to neurodegenerative diseases. Both enzymes play important roles in cholinergic transmission by hydrolyzing the neurotransmitter acetylcholine in cholinergic synapses, central nervous system, neuromuscular junctions and autonomic ganglia. Their inhibitors were used for clinical treatment of some neurodegenerative conditions including myasthenia gravis, Alzheimer's disease, apathy, glaucoma, postural tachycardia syndrome and dementia. Furthermore, usnic acid showed the potent inhibition profiles against AChE (IC50: 1.273 nM) and BChE (IC50: 0.239 nM) enzymes. The results clearly showed that usnic acid is an important natural product with antioxidant and anticholinergic potentials.
Collapse
Affiliation(s)
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
23
|
Sieteiglesias V, González-Burgos E, Bermejo-Bescós P, Divakar PK, Gómez-Serranillos MP. Lichens of Parmelioid Clade as Promising Multitarget Neuroprotective Agents. Chem Res Toxicol 2019; 32:1165-1177. [PMID: 31125207 DOI: 10.1021/acs.chemrestox.9b00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are multifactorial disorders which are increasing in incidence and prevalence over the world without existing effective therapies. The search for new multitarget compounds is the latter therapeutic strategy to address these pathological conditions. Lichens have an important and unknown therapeutic value attributed to their unique secondary metabolites. The aim of this study is to evaluate for the first time the in vitro neuroprotective activities and molecular mechanisms underlying methanol extracts of lichens of the parmelioid clade and to characterize major bioactive secondary metabolites responsible for their pharmacological actions. Of the 15 parmelioid lichen species, our results showed that Parmotrema perlatum and Hypotrachyna formosana methanol extracts exhibited high antioxidant activity as evidenced in ORAC, DPPH, and FRAP assays. Then, SH-SY5Y cells were pretreated with methanol extracts (24 h) followed by Fenton reagent exposure (2 h). Pretreatments with these two more antioxidant methanol lichen extracts increased cell viability, reduced intracellular ROS, prevented oxidative stress biomarkers accumulation, and upregulated antioxidant enzyme (CAT, SOD, GR, and GPx) activity compared to Fenton reagent cells. The neuroprotective activity was much higher for H. formosana than for P. perlatum, even equal to or higher than Trolox (reference compound). Moreover, H. formosana extracts inhibited both AChE and BuChE activities in a concentration dependent manner, and P. perlatum only showed concentration dependent activity against AChE. Finally, chemical composition analysis using TLC and HPLC methods revealed that physodic acid, lividic acid, and lichexanthone are major secondary metabolites in H. formosana and stictic acid and constictic acid are in P. perlatum. These results demonstrated that P. perlatum and, specially, H. formosana are promising multitargeted neuroprotective agents due to their antioxidant and AChE and BuChE inhibition activities.
Collapse
Affiliation(s)
- Víctor Sieteiglesias
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| | - Paloma Bermejo-Bescós
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| | - Pradeep K Divakar
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| | - María Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| |
Collapse
|
24
|
Machado NM, Ribeiro AB, Nicolella HD, Ozelin SD, Silva LHDD, Guissone APP, Rinaldi-Neto F, Lemos ILL, Furtado RA, Cunha WR, Rezende AAAD, Spanó MA, Tavares DC. Usnic acid attenuates genomic instability in Chinese hamster ovary (CHO) cells as well as chemical-induced preneoplastic lesions in rat colon. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:401-410. [PMID: 31066341 DOI: 10.1080/15287394.2019.1613274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Usnic acid (UA) is one of the pharmacologically most important compounds produced by several lichen species. To better understand the mechanism of action (MOA) of this important substance, this study examined the genotoxicity attributed to UA and its influence on mutagens with varying MOA using the micronucleus (MN) test in Chinese hamster ovary cells (CHO). Additional experiments were conducted to investigate the effect of UA on colon carcinogenesis in Wistar rats employing the aberrant crypt focus (ACF) assay. In vitro studies showed a significant increase in the frequency of MN in cultures treated with the highest UA concentration tested (87.13 µM). In contrast, UA concentrations of 10.89, 21.78, or 43.56 µM produced an approximate 60% reduction in chromosomal damage induced by doxorubicin, hydrogen peroxide, and etoposide, indicating an antigenotoxic effect. In the ACF assay, male Wistar rats treated with different UA doses (3.125, 12.5, or 50 mg/kg b.w.) and with the carcinogen 1,2-dimethylhydrazine exhibited a significantly lower incidence of neoplastic lesions in the colon than animals treated only with the carcinogen. Data suggest that the MOA responsible for the chemopreventive effect of UA may be related to interaction with DNA topoisomerase II and/or the antioxidant potential of the compound.
Collapse
Affiliation(s)
- Nayane Moreira Machado
- a Institute of Biotechnology , Federal University of Uberlândia , Uberlândia , MG , Brazil
| | | | | | | | | | | | | | | | | | | | - Alexandre Azenha Alves De Rezende
- a Institute of Biotechnology , Federal University of Uberlândia , Uberlândia , MG , Brazil
- c Faculty of Integrated Sciences of Pontal , Federal University of Uberlândia , Ituiutaba , MG , Brazil
| | - Mário Antônio Spanó
- a Institute of Biotechnology , Federal University of Uberlândia , Uberlândia , MG , Brazil
| | | |
Collapse
|
25
|
González-Burgos E, Fernández-Moriano C, Lozano R, Iglesias I, Gómez-Serranillos M. Ginsenosides Rd and Re co-treatments improve rotenone-induced oxidative stress and mitochondrial impairment in SH-SY5Y neuroblastoma cells. Food Chem Toxicol 2017; 109:38-47. [DOI: 10.1016/j.fct.2017.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 11/15/2022]
|