1
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
3
|
Scientometric and Methodological Analysis of the Recent Literature on the Health-Related Effects of Tomato and Tomato Products. Foods 2021; 10:foods10081905. [PMID: 34441682 PMCID: PMC8393598 DOI: 10.3390/foods10081905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The health benefits of tomato, a vegetable consumed daily in human diets, have received great attention in the scientific community, and a great deal of experiments have tested their utility against several diseases. Herein, we present a scientometric analysis of recent works aimed to estimate the biological effects of tomato, focusing on bibliographic metadata, type of testers, target systems, and methods of analysis. A remarkably variable array of strategies was reported, including testers obtained by standard and special tomatoes, and the use of in vitro and in vivo targets, both healthy and diseased. In vitro, 21 normal and 36 cancer human cell lines derived from 13 different organs were used. The highest cytotoxic effects were reported on cancer blood cells. In vivo, more experiments were carried out with murine than with human systems, addressing healthy individuals, as well as stressed and diseased patients. Multivariate analysis showed that publications in journals indexed in the agriculture category were associated with the use of fresh tomatoes; conversely, medicine and pharmacology journals were associated with the use of purified and formulate testers. Studies conducted in the United States of America preferentially adopted in vivo systems and formulates, combined with blood and tissue analysis. Researchers in Italy, China, India, and Great Britain mostly carried out in vitro research using fresh tomatoes. Gene expression and proteomic analyses were associated with China and India. The emerging scenario evidences the somewhat dichotomic approaches of plant geneticists and agronomists and that of cell biologists and medicine researchers. A higher integration between these two scientific communities would be desirable to foster the assessment of the benefits of tomatoes to human health.
Collapse
|
5
|
Le TN, Sakulsataporn N, Chiu CH, Hsieh PC. Polyphenolic Profile and Varied Bioactivities of Processed Taiwanese Grown Broccoli: A Comparative Study of Edible and Non-Edible Parts. Pharmaceuticals (Basel) 2020; 13:ph13050082. [PMID: 32354112 PMCID: PMC7280965 DOI: 10.3390/ph13050082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Broccoli contains a substantial amount of bioactive compounds such as glucosinolates, phenolics, and essential nutrients, which are positively linked to health-promoting effects. This work aimed to evaluate whether both edible and non-edible parts of broccoli could be effective by examining in vitro antioxidant, cytotoxic, apoptotic, and antibacterial properties of its floret, leaf, and seed extracts (FE, LE, and SE, correspondingly). High-performance liquid chromatography (HPLC) and various assays exhibited strong antioxidant activities of all samples. LE obtained the highest capacity, correlated to its polyphenolic contents. SE exerted significant cytotoxicity against A549, Caco-2, and HepG2 cancer cell lines at low inhibitory concentration (IC)50 values (0.134, 0.209, and 0.238 mg/mL, respectively), as tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry confirmed apoptosis induction of extracts in Caco-2 cells by revealing an increased subG1 population and a decreased mitochondrial membrane potential. The considerable antibacterial efficacy was observed in either LE and SE against Bacillus subtilis and Salmonella typhimurium (0.39-0.78 mg/mL) using well-agar diffusion and minimum inhibitory concentration (MIC) techniques, along with the weak activity against Staphylococcus aureus and Escherichia coli (1.56-3.13 mg/mL). The findings suggest that broccoli and its byproducts might serve as a promising source for further development of food or pharmaceutical products.
Collapse
|
7
|
Cossetin JF, da Silva Brum E, Casoti R, Camponogara C, Dornelles RC, Maziero M, Tatiane de David Antoniazzi C, Guex CG, Ramos AP, Pintos FG, Engelmann AM, Melazzo de Andrade C, Manfron MP, Oliveira SM, de Freitas Bauermann L, Sagrillo MR, Machado AK, Soares Santos AR, Trevisan G. Peanut leaf extract has antioxidant and anti-inflammatory activity but no acute toxic effects. Regul Toxicol Pharmacol 2019; 107:104407. [PMID: 31226392 DOI: 10.1016/j.yrtph.2019.104407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023]
Abstract
Arachis hypogaea L. (peanut) leaves have been popularly used for the treatment of insomnia and inflammation, but no toxicological study has been performed for this plant preparation. This study aimed to examine the phytochemical composition of peanut leaf hydroalcoholic extract (PLHE) and describe its potential toxic effects and antioxidant and anti-inflammatory properties. The qualitative chemical analysis of PLHE by UHPLC-ESI-HRMS allowed the identification of eight metabolites types (totaling 29 compounds). The 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay revealed that PLHE had strong antioxidant effects; it also exhibited nitric oxide (NO)-scavenging capacity. Human peripheral blood mononuclear cells (PBMCs) exposed to PLHE showed no reduced cell viability or increased free double-stranded DNA, NO, or reactive species production. PLHE reversed the cytotoxicity, pro-inflammatory (release of interleukin-1β), and pro-oxidant effects of H2O2 on human PBMCs. Acute PLHE toxicity analysis was performed in vivo using the Organization for Economic Co-operation and Development (OECD) 423 guidelines. PLHE single injection (2000 mg/kg, intragastric) did not cause mortality or morbidity or induce changes in hematological or biochemical parameters after 14 days of administration. Thus, PLHE could be a source of bioactive compounds and possesses antioxidant and anti-inflammatory properties without elicitin cytotoxicity or genotoxicity in human PBMCs or acute toxicity in rats.
Collapse
Affiliation(s)
| | - Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Rosana Casoti
- Graduate Program in Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903, Ribeirão Preto, SP, Brazil
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Rafaela Castro Dornelles
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil; Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Maiara Maziero
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Camille Gaube Guex
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Andiara Prattes Ramos
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Francielle Guedes Pintos
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Ana Martiele Engelmann
- Veterinary Hospital, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Melânia Palermo Manfron
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Michele Rorato Sagrillo
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Alencar Kolinski Machado
- Laboratory of Cell Culture and Genetics, Franciscan University (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Adair Roberto Soares Santos
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil; Graduate Program in Neuroscience, Laboratory of Neurobiology of Pain and Inflammation, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Kam WYJ, Abas F, Hussain N, Mirhosseini H. Comparison of crude extract from durio zibethinus M. (durian) leaf waste via ultrasound-assisted extraction and accelerated solvent extraction: antioxidant activity and cytotoxicity. Nat Prod Res 2019; 34:1937-1941. [DOI: 10.1080/14786419.2018.1564296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Wai-Yee Joanne Kam
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Seri Kembangan, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Seri Kembangan, Selangor, Malaysia
| | - Norhayati Hussain
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Seri Kembangan, Selangor, Malaysia
| | - Hamed Mirhosseini
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Seri Kembangan, Selangor, Malaysia
| |
Collapse
|