1
|
Yang L, Yang L, Cai Y, Luo Y, Wang H, Wang L, Chen J, Liu X, Wu Y, Qin Y, Wu Z, Liu N. Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114948. [PMID: 37105098 DOI: 10.1016/j.ecoenv.2023.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Lihan Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifei Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Li Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming Liu
- College of Animal Science and Technology, Shandong Agricultural University, China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Usuga A, Rojano BA, Duque JC, Mesa C, Restrepo O, Gomez LM, Restrepo G. Dry food affects the oxidative/antioxidant profile of dogs. Vet Med Sci 2023; 9:687-697. [PMID: 36634249 PMCID: PMC10029885 DOI: 10.1002/vms3.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Including adequate concentrations of antioxidants in dog diets has been recommended to reduce their vulnerability to the action of free radicals and reactive oxygen species (ROS). Oxidative stress in dogs has been associated with a wide range of diseases and disorders, as well as with ageing. There are few reports about the influence of diet on dog's antioxidant profile and oxidative stress. OBJECTIVE The objective of this study was to evaluate the effect of four types of dry dog food on the oxidative/antioxidant profile of dogs. METHODS Six Beagle dog males were used. The study included four experimental diets (dry foods A-D). Each dry food was supplied for 5 weeks to all dogs, for a total of 24 weeks, including an adaptation week between one food and another. For each dry dog food, the total phenolic content (TPC), total antioxidant capacity (TAC) and cytotoxicity were evaluated. Each week, a blood sample was collected to measure ROS and TAC of plasma. A crossover repeated measures design was used. Mixed models were adjusted, and means were compared using the Tukey test. RESULTS Food A had the highest values for TPC and TAC. Food C had the lowest levels of ROS, whereas food B had the highest TAC in the blood plasma. The dog had a significant influence on the redox state of its blood plasma, even when the same dog was fed the different dry foods. CONCLUSION Dry dog food influences the oxidative/antioxidant profile of dog's blood plasma; however, this seems to be unrelated to the antioxidant profile of the food.
Collapse
Affiliation(s)
- Alexandra Usuga
- Faculty of Veterinary Medicine and Animal Science, Universidad CES, Medellín, Antioquia, Colombia
| | | | | | - Carolina Mesa
- Nutri-Solla Research Group, Solla S.A., Itagüí, Antioquia, Colombia
| | - Oliver Restrepo
- Nutri-Solla Research Group, Solla S.A., Itagüí, Antioquia, Colombia
| | | | - Giovanni Restrepo
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| |
Collapse
|
3
|
Kara K. Comparison of some mycotoxin concentration and prevalence in premium and economic class of adult dog foods. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2117105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Kanber Kara
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Macías-Montes A, Rial-Berriel C, Acosta-Dacal A, Henríquez-Hernández LA, Almeida-González M, Rodríguez-Hernández Á, Zumbado M, Boada LD, Zaccaroni A, Luzardo OP. Risk assessment of the exposure to mycotoxins in dogs and cats through the consumption of commercial dry food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134592. [PMID: 31780144 DOI: 10.1016/j.scitotenv.2019.134592] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Dry feed for dogs and cats sold in Europe are mostly formulated with cereals and cereal by-products, so the contamination of this food with mycotoxins represents a potential risk for these pets. We analyzed a representation of the best-selling feed brands in Spain. The presence of Aflatoxins (B1, B2, G1, and G2), Ochratoxin A, T-2 and HT-2 toxins, Deoxynivalenol, Zearalenone, and Fumonisins (B1 and B2) was quantified, using immunoaffinity columns and LC-MS/MS. In general, mycotoxins were frequently and simultaneously (6-11) detected, with AFB1, FB1, FB2, Deoxynivalenol, and HT-2 detected in 100% of the samples. However, the concentrations of most of them are among the lowest reported so far. Fumonisins were the exception since we report the highest concentrations to date, particularly in cat feed. We practically found no significant differences in the level of mycotoxin contamination in relation to the presumed quality of the feed. We also calculated the daily exposure, and evaluated the acute and chronic health risk posed by these feeds. None of the brands analyzed presented acute risk for any of the mycotoxins. However, the high levels of fumonisins found in some samples could become problematic, if there are hidden forms of them. This is also evident in relation to long-term risk, since in the case of fumonisins the level of exposure exceeds the tolerable daily intake level in 3.5 and 12 times, for dogs and cats respectively. The exposure levels to zearalenone and deoxynivalenol could also be of long-term concern, especially considering the possibility that the continuous exposure to several mycotoxins simultaneously might produce potentiated toxic effects as a result of their synergistic action. Further research on the potential adverse health effects deriving from chronic exposure to low doses of multi-mycotoxin mixtures in pets is needed.
Collapse
Affiliation(s)
- Ana Macías-Montes
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Ángel Rodríguez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain
| | - Annalisa Zaccaroni
- Large Pelagic Vertebrate Group, Veterinary Faculty, University of Bologna, Viale Vespucci 2, Cesenatico, FC 47042, Italy
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Paseo Blas Cabrera Felipe s/n, 35016 Las Palmas, Spain.
| |
Collapse
|
5
|
Tegzes JH, Oakley BB, Brennan G. Comparison of mycotoxin concentrations in grain versus grain-free dry and wet commercial dog foods. TOXICOLOGY COMMUNICATIONS 2019. [DOI: 10.1080/24734306.2019.1648636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- John H. Tegzes
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Brian B. Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Greg Brennan
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
6
|
Zhang X, Wang Z, Fang Y, Sun R, Cao T, Paudyal N, Fang W, Song H. Antibody Microarray Immunoassay for Simultaneous Quantification of Multiple Mycotoxins in Corn Samples. Toxins (Basel) 2018; 10:toxins10100415. [PMID: 30326616 PMCID: PMC6215206 DOI: 10.3390/toxins10100415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022] Open
Abstract
We developed and tested a prototype of an antibody microarray immunoassay for simultaneous quantitative detection of four typical mycotoxins (aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁) in corn samples. The test kit consisted of a nitrocellulose membrane layered with immobilized monoclonal antibodies against mycotoxins. During the assay, the mycotoxin-protein conjugates were biotinylated. The signal detection was enhanced by a combination of the biotin-streptavidin system and enhanced chemiluminescence (ECL). This improved the sensitivity of the assay. Under the optimized conditions, four calibration curves with goodness of fit (R² > 0.98) were plotted. The results showed that the detection limits for aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁ were 0.21, 0.19, 0.09, and 0.24 ng/mL, with detection ranges of 0.47⁻55.69, 0.48⁻127.11, 0.22⁻31.36, and 0.56⁻92.57 ng/mL, respectively. The limit of detection (LOD) of this antibody microarray for aflatoxin B₁, ochratoxin A, zearalenone, and fumonisin B₁ in corn was 5.25, 4.75, 2.25, and 6 μg/kg, respectively. The recovery rates from the spiked samples were between 79.2% and 113.4%, with coefficient of variation <10%. The results of the analysis of commercial samples for mycotoxins using this new assay and the liquid chromatography-tandem mass spectrometry (LC-MS/MS) were comparable and in good agreement. This assay could also be modified for the simultaneous detection of other multiple mycotoxins, as well as low-weight analytes, hazardous to human health.
Collapse
Affiliation(s)
- Xian Zhang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Zuohuan Wang
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Yun Fang
- Technic Center of Zhejiang Entry-Exit Inspection and Quarantine Bureau, 126 Fuchun Road, Hangzhou 310012, Zhejiang, China.
| | - Renjie Sun
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Tong Cao
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Narayan Paudyal
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
- Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang, China.
| |
Collapse
|