1
|
Pan J, Ni ZJ, Thakur K, Khan MR, Zhang JG, Wei ZJ. Bioactivity and application potential of O/W emulsions derived from carboxylic acid-based NADES-extracted total saponins from Polygonatum cyrtonema Hua. Food Chem 2024; 463:141363. [PMID: 39321654 DOI: 10.1016/j.foodchem.2024.141363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
This study focuses on evaluating new methods for the green extraction of saponin compounds from Polygonatum cyrtonema Hua (PCH). This study utilized a combination of carboxylic acid-based natural deep eutectic solvents (NADES) and various extraction techniques including conventional heat reflux-, ultrasound-, and microwave-assisted extraction. The primary objectives were to assess total saponin yield, antioxidant capacity, and enzyme inhibition efficiency. Additionally, the solvents and extracts were evaluated for their antibacterial activity. Oil-in-water (O/W) emulsions of NADES extracts were also characterized and analyzed for stability. Results indicated that three NADES systems were effective in extracting saponins, with choline chloride and lactic acid (ChCl-LA) system being the most efficient. The ChCl:LA extract exhibited antimicrobial and antioxidant activities superior to conventional organic solvent extracts. Additionally, it demonstrated maximum inhibitory activity (IC50 values: 0.98 ± 0.03 and 1.46 ± 0.07 mg/mL, respectively) against α-glucosidase and α-amylase. The NADES extract as an aqueous phase significantly improved the stationarity of the O/W emulsion. Collectively, the study highlights the antimicrobial and technological advantages of NADES as a potential solvent for extracting saponin compounds from PCH.
Collapse
Affiliation(s)
- Jing Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
3
|
Wang Z, Yu J, Zhao L, Niu T, Wang X. Efficient discovery of active isolates from Dioscorea spongiosa by the combination of bioassay-guided macroporous resin column chromatography and high-speed counter-current chromatography. J Sep Sci 2024; 47:e2300741. [PMID: 38356225 DOI: 10.1002/jssc.202300741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024]
Abstract
In the present study, twelve compounds from Dioscorea spongiosa were successfully purified by an efficient technique combined bioassay-guided fractionation macroporous resin column chromatography (MRCC) pretreatment and high-speed counter-current chromatography (HSCCC) separation for the first time. Then, D101 MRCC was used to fractionate the crude extract into five parts, which further applied the bioassay-guided fractionation strategy to screen the active fractions of 2 and 4. As for the separation, 200 mg Fr.2 was purified by HSCCC using EtOAc/n-BuOH/H2 O (2:2:3, v/v), leading to annulatomarin (1), dioscoresides C (2), diosniponol C (3), methyl protodioscin (4), pseudoprotodioscin (5), protogracillin (6), as well as 200 mg Fr.4 yielding montroumarin (7), dioscorone A (8), diosniponol D (9), protodioscin (10), gracillin (11), and dioscin (12) using CH2 Cl2 /MeOH/H2 O (3:3:2, v/v) with the purities over 95.0%. Finally, the isolates were assayed for their anti-inflammatory, urico-lowering, and anti-diabetic activities in vitro, which indicated that the steroidal saponins of 5, 6, and 11 showed all these three activities.
Collapse
Affiliation(s)
- Zhenqiang Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Jinqian Yu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Lei Zhao
- Chemical Technology Research Institute of Shandong, Qingdao University of Science and Technology, Jinan, P. R. China
| | - Tong Niu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China
| |
Collapse
|
4
|
Gao H, Wang Z, Zhu D, Zhao L, Xiao W. Dioscin: Therapeutic potential for diabetes and complications. Biomed Pharmacother 2024; 170:116051. [PMID: 38154275 DOI: 10.1016/j.biopha.2023.116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Diabetes mellitus is a widespread metabolic disorder with increasing incidence worldwide, posing a considerable threat to human health because of its complications. Therefore, cost-effective antidiabetic drugs with minimal side effects are urgently needed. Dioscin, a naturally occurring compound, helps to reduce the complications of diabetes mellitus by regulating glucose and lipid metabolism, protecting islet β cells, improving insulin resistance, and inhibiting oxidative stress and inflammatory response. Plant-derived dioscin reduces the risk of toxicity and side effects associated with chemically synthesized drugs. It is a promising option for treating diabetes mellitus because of its preventive and therapeutic effects, which may be attributed to a variety of underlying mechanisms. However, data compiled by current studies are preliminary. Information about the molecular mechanism of dioscin remains limited, and no high-quality human experiments and clinical trials for testing its safety and efficacy have been conducted. As a resource for research in this area, this review is expected to provide a systematic framework for the application of dioscin in the treatment of diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Haoyang Gao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Ze Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Danlin Zhu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Linlin Zhao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; School of Physical Education, Shanghai Normal University, Shanghai 200234, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Zhao L, Xu C, Zhou W, Li Y, Xie Y, Hu H, Wang Z. Polygonati Rhizoma with the homology of medicine and food: A review of ethnopharmacology, botany, phytochemistry, pharmacology and applications. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116296. [PMID: 36841378 DOI: 10.1016/j.jep.2023.116296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizoma (PR), which contains rich national cultural connotations, is a traditional Chinese medicine with homology of medicine and food. It has been used for a long time as a tonic in China's multi-ethnic medical system, and is also used to treat diseases such as premature graying hair, deficiency of blood and essence, diabetes, hypertension, etc. Meanwhile, PR is often used as food in China, India, South Korea and other Asian countries, which can satisfy hunger and provide many health benefits. AIM OF THE REVIEW This paper systematically reviewed the ethnopharmacology, botany, phytochemistry, pharmacology and related applications research of PR, and provided a reference for the comprehensive applications of PR, including basic research, product development and clinical applications. This paper also refined the national application characteristics of PR, such as rich plant resources, special chemical components and anti-hidden hungry, which laid a foundation for its high value and high connotation development in the future. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine. RESULTS A comprehensive analysis of the above literature confirmed that PR has been used in the ethnic medicine system of Asian countries such as China for thousands of years. In this paper, 12 species including official species that can be used as PR are summarized, which provide rich plant resources for PR. The chemical components in PR are divided into nutritional components and active components. The former not only contains non-starch polysaccharides and fructo-oligosaccharides, which account for about 50% in PR and are recognized as high-quality diet in the world, but also contains inorganic elements and mineral elements. And a total of 199 kinds active ingredients, including saponins, flavonoids, alkaloids, etc., were sorted out by us. The above ingredients make PR have a special property of anti-hidden hunger. Studies have shown that PR has a wide range of pharmacological activities, such as immune regulation, blood glucose regulation, lipid-lowering, antioxidant, anti-tumor, antibacterial, etc. It has been widely used in medicine, food, cosmetics, gardens and other fields. CONCLUSIONS PR, as a classic medicinal material of the same origin, is widely used in the traditional ethnic medicine system. It contains abundant potential plant resources, chemical components and pharmacological activities. This paper also suggests that PR with high application value in food industry, has the potential to become a high-quality coarse grain. Exploring the way of grain and industrialization of PR is beneficial to fully develop the economic value of PR.
Collapse
Affiliation(s)
- Linxian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
6
|
Zhu M, Sun Y, Bai H, Wang Y, Yang B, Wang Q, Kuang H. Effects of saponins from Chinese herbal medicines on signal transduction pathways in cancer: A review. Front Pharmacol 2023; 14:1159985. [PMID: 37063281 PMCID: PMC10090286 DOI: 10.3389/fphar.2023.1159985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer poses a serious threat to human health, and the search for safe and effective drugs for its treatment has aroused interest and become a long-term goal. Traditional Chinese herbal medicine (TCM), an ancient science with unique anti-cancer advantages, has achieved outstanding results in long-term clinical practice. Accumulating evidence shows that saponins are key bioactive components in TCM and have great research and development applications for their significant role in the treatment of cancer. Saponins are a class of glycosides comprising nonpolar triterpenes or sterols attached to hydrophilic oligosaccharide groups that exert antitumor effects by targeting the NF-κB, PI3Ks-Akt-mTOR, MAPK, Wnt-β-catenin, JAK-STAT3, APMK, p53, and EGFR signaling pathways. Presently, few advances have been made in physiological and pathological studies on the effect of saponins on signal transduction pathways involved in cancer treatment. This paper reviews the phytochemistry and extraction methods of saponins of TCM and their effects on signal transduction pathways in cancer. It aims to provide theoretical support for in-depth studies on the anticancer effects of saponins.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Qiuhong Wang, ; Haixue Kuang,
| |
Collapse
|
7
|
Li XL, Zhang XX, Ma RH, Ni ZJ, Thakur K, Cespedes-Acuña CL, Zhang JG, Wei ZJ. Integrated miRNA and mRNA omics reveal dioscin suppresses migration and invasion via MEK/ERK and JNK signaling pathways in human endometrial carcinoma in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116027. [PMID: 36503030 DOI: 10.1016/j.jep.2022.116027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonatum sibiricum Redouté (PS, also called Huangjing in traditional Chinese medicine), is a perennial herb as homology of medicine and food. According to the traditional Chinese medicine theory "Special Records of Famous Doctors", its functions include invigorating qi and nourishing yin, tonifying spleen and kidney. Traditionally, qi and blood therapy has been believed as most applicable to the treatment of uterine disease. The current research has focused on the effect and mechanism of dioscin, the main active component of PS, on Endometrial carcinoma (EC). AIM OF THE STUDY To study the efficacy of dioscin on proliferation and migration of Endometrial carcinoma cell line, we conducted experiments by using xenograft model and Ishikawa cells, and explored the potential molecular mechanism. MATERIALS AND METHODS mRNA and miRNA omics techniques were employed to investigate the regulatory mechanism of dioscin on EC Ishikawa cells. Based on in vivo and in vitro experiments, cell clone formation, cell scratching, Transwell, H&E staining, immunohistochemistry, q-PCR, and Western blot techniques were used to determine the molecular effects and mechanisms of dioscin on cell migration. RESULTS Integrated miRNA and mRNA omics data showed that 513 significantly different genes marked enrichment in MAPK signaling pathway. The in vivo data showed that dioscin (24 mg/kg) significantly inhibited tumor growth. The in vitro proliferation and invasiveness of dioscin on Ishikawa cells showed that dioscin could significantly decrease the colony numbers, and suppress the Ishikawa cell wound healing, migration and invasion. Molecular data revealed that dioscin decreased the MMP2 and MMP9 expression in vitro and in vivo. The p-MEK, p-ERK, and p-JNK expression levels were also confirmed to be significantly reduced. Key regulators in the MAPK signaling pathway were further validated in xenograft tumors. CONCLUSION Our data indicated that dioscin inhibited Ishikawa cell migration and invasion mediated through MEK/ERK and JNK signaling. More importantly, screened hub miRNAs and genes can be regarded as potential molecular targets for future EC treatment.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Xiu-Xiu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | | | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
8
|
Zheng GZ, Zhang QH, Chang B, Xie P, Liao H, Du SX, Li XD. Dioscin induces osteosarcoma cell apoptosis by upregulating ROS-mediated P38 MAPK signaling. Drug Dev Res 2023; 84:25-35. [PMID: 36401839 DOI: 10.1002/ddr.22009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Many patients with osteosarcoma readily develop resistance to chemotherapy and have an extremely dismal prognosis. Dioscin, a saponin, is known to exhibit potent anticancer activities and induce cellular death of a variety of cancer types. However, the inhibitory effect of dioscin on osteosarcoma cells and its underlying mechanisms have not been fully elucidated. We investigated the responses of human U2-OS and MG63 osteosarcoma cells to dioscin with regard to proliferation, apoptosis, migration, and invasion, and studied the effect of dioscin on MAPK-related proteins by western blot analysis assays. Dioscin inhibited osteosarcoma cell proliferation, migration, and invasion. Moreover, it induced osteosarcoma cell apoptosis via reactive oxygen species (ROS)-dependent apoptotic signaling. N-acetylcysteine, a reactive oxygen species inhibitor, suppressed dioscin-induced apoptosis, indicating that ROS play an essential role in dioscin-induced apoptosis. Western blot analysis assays showed that p38 MAPK was upregulated after dioscin treatment, and that dioscin induced apoptosis by upregulating ROS-mediated p38 MAPK signaling. Our study suggests that dioscin possesses antitumor activities against human osteosarcoma cells, inhibits osteosarcoma cell proliferation, migration and invasion, and induces osteosarcoma cell apoptosis through upregulating ROS-mediated p38 MAPK signaling. This study may provide a new therapeutic strategy and potential clinical applications for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Gui-Zhou Zheng
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Qi-Hao Zhang
- Department of Orthopedics, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Bo Chang
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Peng Xie
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Hang Liao
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Shi-Xin Du
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| | - Xue-Dong Li
- Department of Orthopedics, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Cloning and Characterization of the Gene Encoding HMGS Synthase in Polygonatum sibiricum. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7441296. [PMID: 36246988 PMCID: PMC9568320 DOI: 10.1155/2022/7441296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
The saponins of Polygonatum sibiricum had many pharmacological activities such as antitumor, antioxidation, and blood sugar lowering, which were synthesized by two pathways: mevalonate (MVA) and methylerythritol phosphate (MEP). 3-Hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) was the key enzyme in the MVA synthesis pathway, and its expression level may affect the accumulation of saponins which were the main active ingredients of P. sibiricum. In this study, we successfully cloned HMGS1 and HMGS2 from P. sibiricum and their sequence similarity was 93.71% with 89 different sites. The multiple sequence alignment results indicated that the N-terminal sequences of HMGS were conserved. Phylogenetic analysis showed that P. sibiricum, A. officinalis, N. tazetta, D. nobile, and other relatives had a common evolutionary ancestor. The expression levels of both HMGSs and the total saponin content in different tissues revealed that HMGS expression in rhizomes was positively correlated with total saponin content. Further study of the abiotic stress effect of Methyl Jasmonate (MeJA) demonstrated that the expression of HMGS1 and HMGS2 genes was induced by MeJA, peaked at 24 h, and fell by 48 h. Our present findings would provide a blueprint for future studies of HMGS and its role in triterpenoid biosynthesis in P. sibiricum.
Collapse
|
10
|
Elucidating the Anti-Tumorigenic Efficacy of Oltipraz, a Dithiolethione, in Glioblastoma. Cells 2022; 11:cells11193057. [PMID: 36231019 PMCID: PMC9562012 DOI: 10.3390/cells11193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, displays a highly infiltrative growth pattern and remains refractory to chemotherapy. Phytochemicals carrying specificity and low cytotoxicity may serve as potent and safer alternatives to conventional chemotherapy for treating GBM. We have evaluated the anticancer effects of Oltipraz (Olt), a synthetic dithiolethione found in many vegetables, including crucifers. While Olt exposure was non-toxic to the HEK-293 cell line, it impaired the cell growth in three GBM cell lines (LN18, LN229, and U-87 MG), arresting those at the G2/M phase. Olt-exposed GBM cells induced the generation of reactive oxygen species (ROS), mitochondrial depolarization, caspase 3/7-mediated apoptosis, nuclear condensation, and DNA fragmentation, and decreased glutathione, a natural ROS scavenger, as well as vimentin and β-catenin, the EMT-associated markers. Its effect on a subpopulation of GBM cells exhibiting glioblastoma stem cell (GSCs)-like characteristics revealed a reduced expression of Oct4, Sox2, CD133, CD44, and a decrease in ALDH+, Nestin+ and CD44+ cells. In contrast, there was an increase in the expression of GFAP and GFAP+ cells. The Olt also significantly suppressed the oncosphere-forming ability of cells. Its efficacy was further validated in vivo, wherein oral administration of Olt could suppress the ectopically established GBM tumor growth in SCID mice. However, there was no alteration in body weight, organ ratio, and biochemical parameters, reflecting the absence of any toxicity otherwise. Together, our findings could demonstrate the promising chemotherapeutic efficacy of Olt with potential implications in treating GBM.
Collapse
|
11
|
Guanxinping Tablets Inhibit ET-1-Induced Proliferation and Migration of MOVAS by Suppressing Activated PI3K/Akt/NF- κB Signaling Cascade. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9485463. [PMID: 35685734 PMCID: PMC9173997 DOI: 10.1155/2022/9485463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2021] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
Abstract
Background/Aim Abnormal proliferation and migration of vascular smooth muscle cells is one of the main causes of atherosclerosis (AS). Therefore, the suppression of abnormal proliferation and migration of smooth muscle cells are the important means for the prevention and inhibition of AS. The clinical effects of Guanxinping (GXP) tablets and preliminary clinical research on the topic have proved that GXP can effectively treat coronary heart disease, but its underlying mechanism remains unclear. This study aimed to confirm the inhibitory effect of GXP on the abnormal proliferation of mouse aortic vascular smooth muscle (MOVAS) cells and to explore the underlying mechanism. Methods MOVAS cells were divided into two major groups: physiological and pathological groups. In the physiological group, MOVAS cells were directly stimulated with GXP, whereas in the pathological group, the cells were stimulated by endothelin-1 (ET-1) before intervention by GXP. At the same time, atorvastatin calcium, which effectively inhibits the abnormal proliferation of MOVAS cells, was used in the negative control group. CCK8 assay, scratch test, ELISA, Western blotting, and immunofluorescence staining were performed to observe the proliferation and migration of MOVAS cells and the expression levels of related factors after drug intervention in each group. Results In the physiological group, GXP had no significant effect on the proliferation and migration of MOVAS cells and the related factors. In the pathological group, a high dose of GXP reduced the abnormal proliferation and migration of MOVAS cells. Further, it reduced the expression levels of PI3K; inhibited the phosphorylation of Akt (protein kinase B); upregulated IκB-α levels; prevented nuclear factor kappa B (NF-κB) from entering the nucleus; downregulated the expression of interleukin 6 (IL6), IL-1β, and iNOS; and upregulated the ratio of apoptosis-related factor Bax/Bcl-2. There was no significant difference between the high-dose GXP group and the atorvastatin calcium group (negative control group). Conclusion Our findings revealed that GXP was able to inhibit the proliferation and migration of MOVAS cells by regulating the PI3K/Akt/NF-κB pathway.
Collapse
|
12
|
Huang N, Yu D, Huo J, Wu J, Chen Y, Du X, Wang X. Study of Saponin Components after Biotransformation of Dioscorea nipponica by Endophytic Fungi C39. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2943177. [PMID: 35601820 PMCID: PMC9117070 DOI: 10.1155/2022/2943177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
This study conducted the solid fermentation process of Dioscorea nipponica using endophytic fungi C39 to determine the changes in the diosgenin concentration. The results revealed that endophytic fungi C39 could effectively biotransform the saponin components in D. nipponica. Moreover, the maximum increase in the diosgenin concentration reached 62.67% in 15 days of solid fermentation. MTT assay results demonstrated that the inhibitory effects of the fermentation drugs on four types of cancer cells (liver cancer cells (HepG2), stomach cancer cells (BGC823), cervical cancer cells (HeLa), and lung cancer cells (A549)) were better than those of the crude drugs obtained from D. nipponica. The chemical composition of the samples obtained before and after the biotransformation of D. nipponica was analyzed by UPLC-Q-TOF-MS. A total of 32 compounds were identified, 21 of which have been reported in Dioscorea saponins and the ChemSpider database and 11 compounds were identified for the first time in D. nipponica. The biotransformation process was inferred based on the variation trend of saponins, which included transformation pathways pertaining to glycolytic metabolism, ring closure reaction, dehydrogenation, and carbonylation. The cumulative findings provide the basis for the rapid qualitative analysis of the saponin components of D. nipponica before and after biotransformation. The 11 metabolites obtained from biotransformation are potential active ingredients obtained from D. nipponica, which can be used to further identify pharmacodynamically active substances.
Collapse
Affiliation(s)
- Nannan Huang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Dan Yu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, Heilongjiang 150036, China
| | - Junkai Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Yiyang Chen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Xiaowei Du
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Xijun Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| |
Collapse
|
13
|
Hu Y, Yin M, Bai Y, Chu S, Zhang L, Yang M, Zheng X, Yang Z, Liu J, Li L, Huang L, Peng H. An Evaluation of Traits, Nutritional, and Medicinal Component Quality of Polygonatum cyrtonema Hua and P. sibiricum Red. FRONTIERS IN PLANT SCIENCE 2022; 13:891775. [PMID: 35519815 PMCID: PMC9062581 DOI: 10.3389/fpls.2022.891775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Polygonati rhizoma (Huangjing in Chinese) is a traditional and classic dual-purpose material used in food and medicine. Herbalists in China and Japan have noticed several different rhizome types in Huangjing with different qualities. Rhizome of Polygonatum cyrtonema Hua and P. sibiricum Red. is divided into five types: "Jitou-type" Polygonati rhizoma (JTPR), atypical "Jitou-type" Polygonati rhizoma (AJTPR), "Jiang-type" Polygonati rhizoma (JPR), "Cylinder-type" Polygonati rhizoma (CPR), and "Baiji-type" Polygonati rhizoma (BJPR). This study observed the microstructure and histochemical localization of polysaccharides, saponins, and proteins in Huangjing. Nutritional and medicinal component data and antioxidant capacity (DPPH and ABTS) were analyzed to evaluate the quality of different types of Huangjing. The results showed that the comprehensive quality of the rhizomes, BJPR and JTPR, was better, regardless of their nutritional or medicinal values. Altogether, these results could recommend future breeding efforts to produce Huangjing with improved nutritional and medicinal qualities.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| | - Yunjun Bai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mei Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaowen Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengyang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Junling Liu
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| | - Lei Li
- Jinzhai Senfeng Agricultural Technology Development Co., Ltd., Lu’an, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| |
Collapse
|
14
|
Zhang J, Wang YD, Xue QW, Zhao TR, Khan A, Wang YF, Liu YP, Cao JX, Cheng GG. The effect of ultra-high pretreatment on free, esterified and insoluble-bound phenolics from mango leaves and their antioxidant and cytoprotective activities. Food Chem 2022; 368:130864. [PMID: 34438172 DOI: 10.1016/j.foodchem.2021.130864] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 01/06/2023]
Abstract
Ultra-high pressure (UHP) is a novel non-thermal pretreatment method in food processing for improving the extraction yield of polyphenols and functional properties. The present work investigated the phenolic profiles, antioxidant activities, and cytoprotective effects of the free, esterified, and insoluble-bound phenolic fractions from mango leaves before and after ultra-high pressure (UHP) treatment. UHPLC-Q-Orbitrap-MS/MS analysis resulted in the identification of 42 phenolic compounds in the different phenolic forms. UHP pretreatment could significantly influence the contents of total phenols, total flavonoids and individual compounds in the different phenolic fractions (p < 0.05). After UHP pretreatment, these phenolic fractions exhibited greater antioxidant activity, and inhibited reactive oxygen species production and cell apoptosis (p < 0.05). Meanwhile, IBP were the most potential antioxidative and cytoprotective ingredients. Therefore, UHP pretreated mango leaves with enhanced bioactivity could be used as biological agents in the health food industry to improve its application and economic values.
Collapse
Affiliation(s)
- Jing Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yu-Dan Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, People's Republic of China
| | - Qing-Wang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, China
| | - Tian-Rui Zhao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Yi-Fen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, People's Republic of China
| | - Ya-Ping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Jian-Xin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Gui-Guang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.
| |
Collapse
|
15
|
Qi Z, Le Z, Han F, Feng Y, Yang M, Ji C, Zhao L. Inhibitory regulation of purple sweet potato polysaccharide on the hepatotoxicity of tri-(2,3-dibromopropyl) isocyanate. Int J Biol Macromol 2022; 194:445-451. [PMID: 34813788 DOI: 10.1016/j.ijbiomac.2021.11.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/07/2021] [Accepted: 11/14/2021] [Indexed: 01/27/2023]
Abstract
Tri-(2,3-dibromopropyl) isocyanate (TBC), a new emerged persistent organic pollutant, is widely used in fields of flame retardant, textile, rubber and plastic with strong hepatotoxicity. Purple Sweet Potato Polysaccharide (PSPP) has antioxidant and hepatoprotective effects. This study aims to answer the scientific question whether PSPP has a protective effect on TBC induced liver injury. The effect of PSPP on the apoptosis of HepG2 cells was detected by MTT assay, the morphological changes were observed by morphological observation, and the apoptosis rate was determined by flow cytometry. The apoptotic genes were detected by qPCR assay, the relevant protein express was detected by western blot. The correlation between proteins and genes in the apoptosis pathway of HepG2 cells was calculated. To further reveal the apoptosis mechanism of TBC hepatotoxicity in vivo, 19 target genes and 14 apoptotic related proteins of inhibiting apoptosis via death receptor and mitochondria were discussed, all the above results proved that PSPP had protective effect on liver injury induced by TBC. This study not only provided a scientific basis for clarifying the mechanism of TBC hepatotoxicity and the protective effect of PSPP, but also generated the new point and method in terms of the prevention in advance and early intervention of diseases caused by environmental pollution.
Collapse
Affiliation(s)
- Zheng Qi
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China.
| | - Zhiwei Le
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Furui Han
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Yajie Feng
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Ming Yang
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China
| | - Chenfeng Ji
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin 150076, PR China.
| | - Liangliang Zhao
- Department of Colorectal Surgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
16
|
Li XL, Ma RH, Zhang F, Ni ZJ, Thakur K, Wang S, Zhang JG, Wei ZJ. Evolutionary research trend of Polygonatum species: a comprehensive account of their transformation from traditional medicines to functional foods. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34669530 DOI: 10.1080/10408398.2021.1993783] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
With the advances in Polygonatum research, there is a huge interest in harnessing the valuable functional ingredients of this genus with the potential for functional foods. This review emphasizes the different aspects of Ploygonatum based research starting from its bioactive compounds, their structural characterization, various extraction methods, as well as biological activities. In view of its integral use as an essential medicinal plant, our review emphasizes on its promising food applications both as an ingredient and as a whole food, and its improved health benefits with potential for agricultural and environmental relevance are also discussed. As we collated the recent research information, we present the main challenges and limitations of the current research trend in this area which can upgrade the further expansion of Polygonatum-related research that will strengthen its economic and accessible nutritional value in the food and health industries. By highlighting the need for the unattended species, this review not only fills existing research gaps, but also encourages the researchers to find new avenues for the natural production of bio-based functional materials and the development of highly functional and health-promoting foods for disease prevention and treatment.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China.,Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
17
|
4-Hydroxyderricin Promotes Apoptosis and Cell Cycle Arrest through Regulating PI3K/AKT/mTOR Pathway in Hepatocellular Cells. Foods 2021; 10:foods10092036. [PMID: 34574146 PMCID: PMC8468691 DOI: 10.3390/foods10092036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
4-hydroxyderricin (4-HD), as a natural flavonoid compound derived from Angelica keiskei, has largely unknown inhibition and mechanisms on liver cancer. Herein, we investigated the inhibitory effects of 4-HD on hepatocellular carcinoma (HCC) cells and clarified the potential mechanisms by exploring apoptosis and cell cycle arrest mediated via the PI3K/AKT/mTOR signaling pathway. Our results show that 4-HD treatment dramatically decreased the survival rate and activities of HepG2 and Huh7 cells. The protein expressions of apoptosis-related genes significantly increased, while those related to the cell cycle were decreased by 4-HD. 4-HD also down-regulated PI3K, p-PI3K, p-AKT, and p-mTOR protein expression. Moreover, PI3K inhibitor (LY294002) enhanced the promoting effect of 4-HD on apoptosis and cell cycle arrest in HCC cells. Consequently, we demonstrate that 4-HD can suppress the proliferation of HCC cells by promoting the PI3K/AKT/mTOR signaling pathway mediated apoptosis and cell cycle arrest.
Collapse
|
18
|
Marahatha R, Gyawali K, Sharma K, Gyawali N, Tandan P, Adhikari A, Timilsina G, Bhattarai S, Lamichhane G, Acharya A, Pathak I, Devkota HP, Parajuli N. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials. Phytother Res 2021; 35:5103-5124. [PMID: 33957012 DOI: 10.1002/ptr.7138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022]
Abstract
Natural products and their derivatives are known to be useful for treating numerous diseases since ancient times. Because of their high therapeutic potentials, the use of different medicinal plants is possible to treat varied inflammation-mediated chronic diseases. Among natural products, phytosteroids have emerged as promising compounds mostly because they have diverse pharmacological activities. Currently, available medications exert numerous systemic toxicities, including hypertension, immune suppression, osteoporosis, and metabolic abnormalities. Thus, further research on phytosteroids to subside these complications is of significant importance. In this study, the information on phytosteroids, their types, and actions against inflammation, and allergic complications was collected by a systematic survey of literature on several scientific search engines. The literature review suggested that phytosteroids exhibit antiinflammatory action via different modes through transrepression or selective COX-2 enzymes. Also, in silico ADMET analysis was carried out on available phytosteroids to uncover their pharmacokinetic properties. Our analysis has shown that eight compounds: withaferin A, stigmasterol, β-sitosterol, guggulsterone, diosgenin, sarsasapogenin, physalin A, and dioscin, -isolated from medicinal plants show similar pharmacokinetic properties as compared to dexamethasone, commercially available glucocorticoid. These phytosteroids could be useful for the treatment of inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, asthma, and cardiovascular diseases. Thus, systematic research is required to explore potent phytosteroids with lesser side effects, which might substitute the current medications.
Collapse
Affiliation(s)
- Rishab Marahatha
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Kabita Gyawali
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Kabita Sharma
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Narayan Gyawali
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Parbati Tandan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Grishma Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Salyan Bhattarai
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Canada
| | - Ganesh Lamichhane
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| | - Ashis Acharya
- Central Department of Geology, Tribhuvan University, Kirtipur, Nepal
| | - Ishwor Pathak
- Department of Chemistry, Amrit Campus, Tribhuvan University, Thamel, Nepal
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
19
|
Xie Y, Chen G. Dioscin induces ferroptosis and synergistic cytotoxicity with chemotherapeutics in melanoma cells. Biochem Biophys Res Commun 2021; 557:213-220. [PMID: 33878610 DOI: 10.1016/j.bbrc.2021.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
In this study, we evaluated the anti-tumor effects of dioscin, a steroidal saponin, on melanoma cells. Dioscin significantly inhibited cell viability and induced cell death of melanoma cells in a time- and dose- dependent manner. Furthermore, dioscin increased the concentration of intracellular ferrous irons, MDA and ROS. This effect could be inhibited by L-g-glutamyl-p-nitroanilide (GPNA), compound 968 and ferroptosis inhibitor ferrostatin-1 (Fer-1). Furthermore, dioscin induced ferroptosis by affecting the expression of transferrin and ferroportin which are regulators of intracellular levels of iron. Finally, dioscin in combination with various chemotherapeutic agents showed synergistic effects against melanoma cells. Our data suggested that dioscin exerted anti-tumor effects in melanoma cells by inducing ferroptosis. Dioscin alone or with other agents might be applied as a promising strategy to treat melanoma.
Collapse
Affiliation(s)
- Yijie Xie
- Department of Dermatology, The Affiliated People's Hospital of Ningbo University, 315100, Ningbo, Zhejiang, China.
| | - Guangxiong Chen
- Department of Dermatology, The Affiliated People's Hospital of Ningbo University, 315100, Ningbo, Zhejiang, China
| |
Collapse
|
20
|
Radiosensitization potential of caffeic acid phenethyl ester and the long non-coding RNAs in response to 60Coγ radiation in mouse hepatoma cells. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Plumbagin induces Ishikawa cell cycle arrest, autophagy, and apoptosis via the PI3K/Akt signaling pathway in endometrial cancer. Food Chem Toxicol 2021; 148:111957. [DOI: 10.1016/j.fct.2020.111957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
|
22
|
Li XL, Ma RH, Ni ZJ, Thakur K, Cespedes-Acuña CL, Wang S, Zhang JG, Wei ZJ. Dioscin inhibits human endometrial carcinoma proliferation via G0/G1 cell cycle arrest and mitochondrial-dependent signaling pathway. Food Chem Toxicol 2020; 148:111941. [PMID: 33359023 DOI: 10.1016/j.fct.2020.111941] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
The present study emphasized on the anti-cancerous effects of dioscin and its underlying molecular mechanism in human endometrial cancer Ishikawa cells. Dioscin significantly suppressed the proliferation of Ishikawa cells at IC50 of 2.37 μM. Besides, dioscin could inhibit the proliferation of Ishikawa cells by blocking the G0/G1 cell cycle through up-regulation of p16, p21, and p27 and down-regulation of cycle-cellular protein (Cyclin A/D/E) and cyclin-dependent kinase (CDK2/4/6). Also, it promoted apoptosis through the mitochondrial pathway, including the regulation of Bcl family proteins, the increase of ROS levels, the activation of caspases (Caspase 9/3), and the decrease of mitochondrial membrane permeability. Whereas dioscin also effectively activated the marker genes and proteins (Fas, TNF-R1, and Caspase 8) related to the death receptor-mediated pathway which confirmed the involvement of both the pathways for dioscin-induced apoptosis. The current results demonstrated that dioscin possessed potential health benefits with respect to endometrial cancer prevention and treatment.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Run-Hui Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | | | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
23
|
Liao AM, Cai B, Huang JH, Hui M, Lee KK, Lee KY, Chun C. Synthesis, anticancer activity and potential application of diosgenin modified cancer chemotherapeutic agent cytarabine. Food Chem Toxicol 2020; 148:111920. [PMID: 33346046 DOI: 10.1016/j.fct.2020.111920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/31/2023]
Abstract
Diosgenin (DG), a steroidal saponin, is mainly found in yam tubers. DG and its derivatives displayed significant pharmacological activities against inflammatory, hyperlipidemia, and various cancers. DG was selected to modify the cancer chemotherapeutic agent cytarabine (Ara-C) due to its anti-tumor activities as well as lipophilicity. After characterization, the biomembrane affinity and the kinetic thermal processes of the obtained DG-Ara-C conjugate were evaluated by differential scanning calorimetry (DSC). Thin hydration method with sonication was applied to prepare the DG-Ara-C liposomes without cholesterol since the DG moiety has the similar basic structure with cholesterol with more advantages. Dynamic Light Scattering (DLS) analysis and cytotoxic analysis were employed to characterize the DG-Ara-C liposomes and investigate their biological activities, respectively. The results indicated that DG changed the biomembrane affinity of Ara-C and successfully replaced the cholesterol during the liposome preparation. The DG-Ara-C liposomes have an average particle size of around 116 nm with a narrow size distribution and revealed better anti-cancer activity against leukemia cells and solid tumor cells than that of free DG or Ara-C. Therefore, it can be concluded that DG displayed the potential application as an anti-cancer drug carrier to improve the bio-activities, since DG counted for a critical component in modulating the biomembrane affinity, preparation of liposome, and release of hydrophilic Ara-C from lipid vesicles.
Collapse
Affiliation(s)
- Ai-Mei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bangrong Cai
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea; Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450001, China
| | - Ji-Hong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Cooperation Science and Technology Institute, Luoyang, 471000, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Kyung-Ku Lee
- Testing and Evaluation Center for Dental Devices, Chonnam National University Dental Hospital, Gwangju, 61186, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - ChangJu Chun
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
24
|
Wang Q, Guan X, Lai C, Gao H, Zheng Y, Huang J, Lin B. Selenium enrichment improves anti-proliferative effect of oolong tea extract on human hepatoma HuH-7 cells. Food Chem Toxicol 2020; 147:111873. [PMID: 33248145 DOI: 10.1016/j.fct.2020.111873] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Selenium (Se)-enriched tea is attracting increasing interests due to its significantly improved health benefits. This study was to investigate the anti-proliferative effects of Se-enriched oolong tea against human hepatoma HuH-7 cells. Compared with regular oolong tea extract (TE, 0.04 μg selenium/g), Se-enriched oolong tea extract (Se-TE, 0.51 μg selenium/g) exhibited more prominent anti-proliferative effect against HuH-7 cells with an IC50 of 203.1 μg/mL, mainly due to the synergistic effects of organic selenium and tea polyphenols. Our results found that Se-TE increased intracellular ROS production, arrested the cell cycle at G2/M phase, and thus induced cell apoptosis. In addition, western blotting assay revealed the increased expressions of the p53, Bax, caspase 3, and a reduction of Bcl-2 and CDK2, resulting in Se-TE-induced apoptosis. The improved anti-proliferative effect makes Se-enriched oolong tea extract a promising health-promoting ingredient in food industry.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, China
| | - Xuefang Guan
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, China
| | - Chengchun Lai
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, China
| | - Huiying Gao
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, China
| | - Bin Lin
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, Fuzhou, 350003, China.
| |
Collapse
|
25
|
Yao Y, Cui L, Ye J, Yang G, Lu G, Fang X, Zeng Z, Zhou J. Dioscin facilitates ROS-induced apoptosis via the p38-MAPK/HSP27-mediated pathways in lung squamous cell carcinoma. Int J Biol Sci 2020; 16:2883-2894. [PMID: 33061803 PMCID: PMC7545707 DOI: 10.7150/ijbs.45710] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
Lung squamous cell carcinoma (SCC) is one of the deadliest cancers both in China and worldwide. To date, the efficacy of lung SCC treatments is limited. Recent studies have elucidated the powerful anti-tumour role of dioscin in different human cancers. Here, our study aims to investigate the effect of dioscin on lung SCC and its underlying mechanism. First, we found that dioscin not only inhibited cell proliferation and cell migration and induced cell apoptosis in lung SCC cells but also suppressed tumour growth in tumour-bearing mice. Furthermore, we noted that the accumulation of intracellular reactive oxygen species (ROS) was triggered by dioscin in lung SCC cells, leading to the phosphorylation of HSP27 through p38-MAPK and consequent cell apoptosis. The activation of p38-MAPK/HSP27 induced by the p38-MAPK activator Anisomycin enhanced the apoptosis of lung SCC cells, while the ROS inhibitor N-acetyl-L-cysteine (NAC) and the p38-MAPK inhibitor SB203580 both attenuated dioscin-mediated cell apoptosis. Moreover, NAC suppressed the activation of p38-MAPK/HSP27 that induced by dioscin. In conclusion, these results confirm that dioscin facilitates ROS-induced apoptosis via the p38-MAPK/HSP27-mediated pathway in lung SCC.
Collapse
Affiliation(s)
- Yinan Yao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Luyun Cui
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiani Ye
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdie Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaomei Fang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhu Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Hussain SS, Zhang F, Zhang Y, Thakur K, Naudhani M, Cespedes-Acuña CL, Wei Z. Stevenleaf from Gynostemma Pentaphyllum inhibits human hepatoma cell (HepG2) through cell cycle arrest and apoptotic induction. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Zhao P, Li X, Wang Y, Zhang X, Jia H, Guo L, Huang L, Gao W. Comparative studies on characterization, saccharide mapping and antiglycation activity of polysaccharides from different Polygonatum ssp. J Pharm Biomed Anal 2020; 186:113243. [PMID: 32229391 DOI: 10.1016/j.jpba.2020.113243] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
|
28
|
Yin F, Zhou H, Fang Y, Li C, He Y, Yu L, Wan H, Yang J. Astragaloside IV alleviates ischemia reperfusion-induced apoptosis by inhibiting the activation of key factors in death receptor pathway and mitochondrial pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112319. [PMID: 31639488 DOI: 10.1016/j.jep.2019.112319] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apoptosis plays an important role in cerebral ischemia-reperfusion injury and triggers a series of pathological changes which may even be life-threatening. Astragaloside-IV (AS-IV), a natural compound extracted from Astragalus (Astragalus membranaceus (Fisch.) Bunge., Leguminosae, Huangqi in Chinese), showed neuroprotective effects in the study of cerebral ischemia-reperfusion injury. In this study we investigate the effects of AS-IV on apoptosis induced by transient cerebral ischemia and reperfusion in rats, as well as the associated regulatory factors. METHODS AS-IV was administrated to male Sprague-Dawley (SD) rats after transient cerebral ischemia and reperfusion surgery (12.5, 25, and 50 mg/kg, once per day, continued for 7 days after surgey). After seven days of continuous administration, neurological function, cerebral infarction volume, and pathological changes of brain tissue were detected. Fas, FasL, Caspase-8, Bax, and Bcl-2 mRNA levels were determined by real-time PCR. Caspase-8, Bid, Cytochrome C (Cyto C), cleaved Caspase-3 proteins were determined by western blot and immunohistochemistry was used to quantify Cyto C. RESULTS AS-IV significantly attenuated the neurological deficit in rats with ischemica-reperfusion injury, and reduced cerebral infarction and neuronal apoptosis. AS-IV inhibited the mRNA upregulation of Fas, FasL, Caspase-8, and Bax/Bcl-2. Furthermore, the protein level of apoptosis cytokines Caspase-8, Bid, cleaved Caspase-3 and Cyto C were also inhibited after ischemia reperfusion, suggesting that AS-IV might alleviate ischemia reperfusion-induced apoptosis by inhibiting the activation of key factors in death receptor pathway and mitochondrial pathway.
Collapse
Affiliation(s)
- Fei Yin
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuchen Fang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Yu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
29
|
Zhang F, Zhang YY, Sun YS, Ma RH, Thakur K, Zhang JG, Wei ZJ. Asparanin A from Asparagus officinalis L. Induces G0/G1 Cell Cycle Arrest and Apoptosis in Human Endometrial Carcinoma Ishikawa Cells via Mitochondrial and PI3K/AKT Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:213-224. [PMID: 31861958 DOI: 10.1021/acs.jafc.9b07103] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Asparanin A (AA), a steroidal saponin from Asparagus officinalis L., has anticancer activity: however, its detailed molecular mechanisms in endometrial cancer (EC) have not been studied so far. We evaluated the anticancer activity and underlying mechanism of AA on EC cell line Ishikawa in vitro and in vivo. AA inhibited the Ishikawa cell proliferation and caused cell morphology alteration and cell cycle arrest in G0/G1 phase. Moreover, it could induce apoptosis through mitochondrial pathway, including the deregulation of Bak/Bcl-xl ratio which led to the generation of ROS, up-regulation of cytochrome c followed by decrease of Δψm, and activation of caspases, besides inhibition of the PI3K/AKT/mTOR pathway. In vivo data showed that administration of AA significantly inhibited the tumor tissue cell proliferation, reduced the tumor growth, and induced the apoptosis occurrence. AA can be a possible functional food ingredient to cure endometrial cancer followed by clinical trials.
Collapse
Affiliation(s)
- Fan Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
- School of Environmental Science and Engineering , Anhui Normal University , Wuhu 241002 , People's Republic of China
| | - Yuan-Yuan Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Ya-Sai Sun
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Run-Hui Ma
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| |
Collapse
|
30
|
Wu T, Shen M, Liu S, Yu Q, Chen Y, Xie J. Ameliorative effect of Cyclocarya paliurus polysaccharides against carbon tetrachloride induced oxidative stress in liver and kidney of mice. Food Chem Toxicol 2020; 135:111014. [DOI: 10.1016/j.fct.2019.111014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
|
31
|
Sun YS, Thakur K, Hu F, Zhang JG, Wei ZJ. Icariside II inhibits tumorigenesis via inhibiting AKT/Cyclin E/ CDK 2 pathway and activating mitochondria-dependent pathway. Pharmacol Res 2019; 152:104616. [PMID: 31883767 DOI: 10.1016/j.phrs.2019.104616] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022]
Abstract
Cervical cancer contributes largely in women cancer-related mortality. Herein, Icariside II, a flavonoid extracted from edible and pharmaceutical plant Epimedium brevicornum Maxim, exhibited significant anticancer activity on cervical cancer. At first, it was observed that Icariside II inhibited Hela cell proliferation at IC50 (9.2 μM) and the growth of Hela-originated xenografts in BALB/c nude mice. Next, we studied the underlying mechanisms of Icariside II from the aspects of cell growth and cell death. As for cell growth, Icariside II arrested cell cycle at G0/G1 phase through AKT/Cyclin E/CDK 2 from transcriptional and translational levels. As for cell death, Flow Cytometry and Immunofluorescence showed that Icariside II promoted cell death in a dose-dependet manner. And, Icariside II turned to activate the mitochondria-dependent pathway Caspase 9/Caspase 3 much more significantly than death receptor pathway Caspase 8/Caspase 3. Taken together, Icariside II presented anticancer effect on cervical cancer both in vitro and in vivo. Our study provides the evidence that Icariside II can be used as a suitable novel agent in cervical cancer treatment.
Collapse
Affiliation(s)
- Ya-Sai Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
32
|
Design, Preparation, and Characterization of Dioscin Nanosuspensions and Evaluation of Their Protective Effect against Carbon Tetrachloride-Induced Acute Liver Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3907915. [PMID: 31814841 PMCID: PMC6878791 DOI: 10.1155/2019/3907915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to prepare a dioscin nanosuspension (Dio-NS) that has a better distance and high solubility for oral administration and to evaluate its hepatoprotective effects. Optimal primary manufacture parameters, including shear time, shear speed, emulation temperature, pressure, and cycles of homogenization, were determined by single-factor experiments. The concentrations of dioscin, SDS, and soybean lecithin were optimized using the central composite design-response surface method, and their effects on the mean particle size (MPS) and particle size distribution of Dio-NS were investigated. Characterization of the Dio-NS formulations included examinations of the surface morphology and physical status of dioscin in Dio-NS, the stability of Dio-NS at different temperatures, in vitro solubility, and liver protective effect in vivo. Under optimal conditions, Dio-NS had an MPS of 106.72 nm, polydispersity index of 0.221, and zeta potential of −34.27 mV. Furthermore, the proportion of dioscin in Dio-NS was approximately 21.26%. The observation of particles with a spherical shape and the disappearance of crystalline peaks indicated that the physical and chemical properties of Dio-NS were altered. Furthermore, we observed that the dissolution of Dio-NS was superior to that of a physical mixture and Dio-GZF. Moreover, Dio-NS was demonstrated to have a protective effect against CCl4-induced acute liver damage in mice that was equivalent to that of silymarin (a positive control drug) at the same dose. The good hepatoprotective effect of our Dio-NS preparation can provide a theoretical basis for investigating its absorption mechanisms in the body.
Collapse
|
33
|
Liu LQ, Hu L, Hu XB, Xu J, Wu AM, Chen H, Gu PY, Hu SL. MiR-92a antagonized the facilitation effect of extracellular matrix protein 1 in GC metastasis through targeting its 3′UTR region. Food Chem Toxicol 2019; 133:110779. [DOI: 10.1016/j.fct.2019.110779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
|
34
|
Kang Q, Zhang X, Cao N, Chen C, Yi J, Hao L, Ji Y, Liu X, Lu J. EGCG enhances cancer cells sensitivity under 60Coγ radiation based on miR-34a/Sirt1/p53. Food Chem Toxicol 2019; 133:110807. [DOI: 10.1016/j.fct.2019.110807] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 01/04/2023]
|
35
|
Shu Q, Wu J, Chen Q. Synthesis, Characterization of Liposomes Modified with Biosurfactant MEL-A Loading Betulinic Acid and Its Anticancer Effect in HepG2 Cell. Molecules 2019; 24:E3939. [PMID: 31683639 PMCID: PMC6864557 DOI: 10.3390/molecules24213939] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023] Open
Abstract
As a novel natural compound delivery system, liposomes are capable of incorporating lipophilic bioactive compounds with enhanced compound solubility, stability and bioavailability, and have been successfully translated into real-time clinical applications. To construct the soy phosphatidylcholine (SPC)-cholesterol (Chol) liposome system, the optimal formulation was investigated as 3:1 of SPC to Chol, 10% mannosylerythritol lipid-A (MEL-A) and 1% betulinic acid. Results show that liposomes with or without betulinic acid or MEL-A are able to inhibit the proliferation of HepG2 cells with a dose-effect relation remarkably. In addition, the modification of MEL-A in liposomes can significantly promote cell apoptosis and strengthen the destruction of mitochondrial membrane potential in HepG2 cells. Liposomes containing MEL-A and betulinic acid have exhibited excellent anticancer activity, which provide factual basis for the development of MEL-A in the anti-cancer applications. These results provide a design thought to develop delivery liposome systems carrying betulinic acid with enhanced functional and pharmaceutical attributes.
Collapse
Affiliation(s)
- Qin Shu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Jianan Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Methyl protodioscin from Polygonatum sibiricum inhibits cervical cancer through cell cycle arrest and apoptosis induction. Food Chem Toxicol 2019; 132:110655. [DOI: 10.1016/j.fct.2019.110655] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
|
37
|
Yang L, Ren S, Xu F, Ma Z, Liu X, Wang L. Recent Advances in the Pharmacological Activities of Dioscin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763602. [PMID: 31511824 PMCID: PMC6710808 DOI: 10.1155/2019/5763602] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Dioscin is a typical saponin with multiple pharmacological activities. The past few years have seen an emerging interest in and growing research on this pleiotropic saponin. Here, we review the emerging pharmacological activities reported recently, with foci on its antitumor, antimicrobial, anti-inflammatory, antioxidative, and tissue-protective properties. The potential use of dioscin in therapies of diverse clinical disorders is also discussed.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lufei Wang
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| |
Collapse
|
38
|
Zhang YY, Zhang F, Zhang YS, Thakur K, Zhang JG, Liu Y, Kan H, Wei ZJ. Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7378-7389. [PMID: 31184118 DOI: 10.1021/acs.jafc.9b02759] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The molecular mechanism of Juglone-induced cell cycle arrest and apoptosis in human endometrial cancer cells was investigated. Juglone was purified from the green husk of Carya cathayensis Sarg and identified by HPLC, LC-MS/MS, and NMR. At an IC50 of 20.81 μM, juglone significantly inhibited Ishikawa cell proliferation, as shown by S phase arrest mediated by inactivation of cyclin A protein ( p < 0.05). The ROS levels increased significantly after exposure to juglone, which paralleled increases in the mRNA and protein expression of p21 and decreases in the levels of CDK2, cdc25A, CHK1, and cyclin A. The expression of Bcl-2 and Bcl-xL was significantly down-regulated, whereas the expression of Bax, Bad and cyto c was up-regulated, and we later confirmed the involvement of the mitochondrial pathway in juglone-induced apoptosis. Our in vitro results stated that juglone can be studied further as an effective natural anticancer agent.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Fan Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Ying-Shuo Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Yun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education , Southwest Forestry University , Kunming 650224 , People's Republic of China
| | - Huan Kan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education , Southwest Forestry University , Kunming 650224 , People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
- Anhui Province Key Laboratory of Functional Compound Seasoning , Anhui Qiangwang Seasoning Food Company, Ltd. , Jieshou 236500 , People's Republic of China
| |
Collapse
|
39
|
de Pablos RM, Espinosa-Oliva AM, Hornedo-Ortega R, Cano M, Arguelles S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol Res 2019; 143:58-72. [DOI: 10.1016/j.phrs.2019.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
|
40
|
Li T, Lv M, Chen X, Yu Y, Zang G, Tang Z. Plumbagin inhibits proliferation and induces apoptosis of hepatocellular carcinoma by downregulating the expression of SIVA. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1289-1300. [PMID: 31118568 PMCID: PMC6498963 DOI: 10.2147/dddt.s200610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Purpose: Plumbagin is thought to be a bioactive phytochemical drug and exerts an antitumor effect on various cancers. However, few studies focus on the antitumor activity of plumbagin on liver cancer. This study first investigated the antitumor activity of plumbagin on liver cancer and further investigated the molecular mechanism of its antitumor activity against hepatocellular carcinoma, both in vitro and in vivo. Methods: The antiproliferative activity of plumbagin was evaluated through CCK-8, EdU, and colony forming test. The cell cycle and apoptosis were then analyzed by flow cytometer. Western blot was used to detect the expression of apoptosis related protein, SIVA, and mTOR pathway. RNA-seq was performed to determine the gene expression profiles and overexpressed or knocked down SIVA to validate its role in plumbagin’s antitumor activity. Regarding animal experiment, a xenograft model in BALB/c nude mice was built using LM3-Luci cells. Then bioluminescence imaging and further immunohistochemistry were performed to study the antitumor activity and the expression of SIVA and mTOR in the plumbagin-treated group. Results: Plumbagin can inhibit proliferation and induce apoptosis of liver cancer cells in vitro. Further experiment demonstrated that plumbagin could inhibit the expression of SIVA and subsequently downregulate the mTOR signaling pathway, and upregulating the expression of SIVA will alleviate the antitumor activity of plumbagin on liver cancer, which confirmed the important role of the SIVA/mTOR signaling pathway in the antitumor activity of plumbagin. In vivo bioluminescence imaging showed a decreased signal in the plumbagin-treated group, and further immunohistochemistry demonstrated that plumbagin could inhibit the SIVA/mTOR signaling pathway in tumor tissues. Conclusion: Our promising results showed that plumbagin could inhibit proliferation and induce apoptosis of hepatic cancer through inhibiting the SIVA/mTOR signaling pathway for the first time, which indicated that plumbagin might be a good candidate against liver cancer.
Collapse
Affiliation(s)
- Tingting Li
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Mengjiao Lv
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| |
Collapse
|
41
|
Wang J, Liao AM, Thakur K, Zhang JG, Huang JH, Wei ZJ. Licochalcone B Extracted from Glycyrrhiza uralensis Fisch Induces Apoptotic Effects in Human Hepatoma Cell HepG2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3341-3353. [PMID: 30835110 DOI: 10.1021/acs.jafc.9b00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The present study explored the molecular mechanism by which licochalcone B induces the cell cycle arrest and apoptosis in human hepatoma cell HepG2. Initial extraction and identification were performed by HPLC, UPLC-TOF-MS/MS, and NMR analysis, respectively. Licochalcone B inhibited the HepG2 growth with IC50 (110.15 μM) after 24 h, caused morphological distortion, and seized the cell cycle in the G2/M phase (cell arrest in G2/M:43.1 ± 2.2% for 120 μM versus 23.7 ± 1.2% for control), as well as induced apoptosis and intracellular ROS generation. Furthermore, exposure to licochalcone B markedly affected the cell cycle (up/down regulation) at mRNA and protein levels. Apoptosis was induced through the activation of receptor-mediated and mitochondrial pathways. The inhibition of Caspase 8 and Caspase 9 proteins abolished the licochalcone B induced apoptosis. The present work suggested that licochalcone B may further be identified as a potent functional food component with specific health benefits.
Collapse
Affiliation(s)
- Jun Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Ai-Mei Liao
- College of Biological Engineering , Henan University of Technology , Zhengzhou 450001 , People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Ji-Hong Huang
- College of Biological Engineering , Henan University of Technology , Zhengzhou 450001 , People's Republic of China
- Henan Cooperation Science and Technology Institute, Luoyang 471000 , People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
- Anhui Province Key Laboratory of Functional Compound Seasoning , Anhui Qiangwang Seasoning Food Co., Ltd. , Jieshou 236500 , People's Republic of China
| |
Collapse
|
42
|
Peng S, Hou Y, Yao J, Fang J. Activation of Nrf2 by costunolide provides neuroprotective effect in PC12 cells. Food Funct 2019; 10:4143-4152. [DOI: 10.1039/c8fo02249f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Costunolide (COS), a natural sesquiterpene lactone originally isolated from Inula helenium (Compositae), shows potent neuroprotective effects against oxidative stress-mediated injuries of PC12 cells via activating transcription factor Nrf2.
Collapse
Affiliation(s)
- Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
- Department of Gastrointestinal Surgery/Hepatobiliary and Enteric Surgery Research Center
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| |
Collapse
|