1
|
Sharma B, Dhiman C, Hasan GM, Shamsi A, Hassan MI. Pharmacological Features and Therapeutic Implications of Plumbagin in Cancer and Metabolic Disorders: A Narrative Review. Nutrients 2024; 16:3033. [PMID: 39275349 PMCID: PMC11397539 DOI: 10.3390/nu16173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Plumbagin (PLB) is a naphthoquinone extracted from Plumbago indica. In recent times, there has been a growing body of evidence suggesting the potential importance of naphthoquinones, both natural and artificial, in the pharmacological world. Numerous studies have indicated that PLB plays a vital role in combating cancers and other disorders. There is substantial evidence indicating that PLB may have a significant role in the treatment of breast cancer, brain tumours, lung cancer, hepatocellular carcinoma, and other conditions. Moreover, its potent anti-oxidant and anti-inflammatory properties offer promising avenues for the treatment of neurodegenerative and cardiovascular diseases. A number of studies have identified various pathways that may be responsible for the therapeutic efficacy of PLB. These include cell cycle regulation, apoptotic pathways, ROS induction pathways, inflammatory pathways, and signal transduction pathways such as PI3K/AKT/mTOR, STAT3/PLK1/AKT, and others. This review aims to provide a comprehensive analysis of the diverse pharmacological roles of PLB, examining the mechanisms through which it operates and exploring its potential applications in various medical conditions. In addition, we have conducted a review of the various formulations that have been reported in the literature with the objective of enhancing the efficacy of the compound. However, the majority of the reviewed data are based on in vitro and in vivo studies. To gain a comprehensive understanding of the safety and efficacy of PLB in humans and to ascertain its potential integration into therapeutic regimens for cancer and chronic diseases, rigorous clinical trials are essential. Finally, by synthesizing current research and identifying gaps in knowledge, this review seeks to enhance our understanding of PLB and its therapeutic prospects, paving the way for future studies and clinical applications.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Chitra Dhiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md Imtiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
2
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
3
|
Wang B, Kong W, Lv L, Wang Z. Plumbagin induces ferroptosis in colon cancer cells by regulating p53-related SLC7A11 expression. Heliyon 2024; 10:e28364. [PMID: 38596137 PMCID: PMC11002553 DOI: 10.1016/j.heliyon.2024.e28364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Objective This study examined the mechanism through which plumbagin induces ferroptosis of colon cancer cells. Methods CCK-8 assay was performed to examine the viability of colon cancer cells (SW480 and HCT116 cells) after they were treated with 0-, 5-, 10-, 15- and 20-μmol/L plumbagin. Colony formation assay and Transwell assay were used to examine the effects of 15-μmol/L plumbagin on the proliferation, invasive ability. The ferroptosis of SW480 and HCT116 cells and the expression of p-p53, p53 and SLC7A11 were analysed. The effects of blocking necrosis, apoptosis and ferroptosis on the anti-cancer effects of plumbagin were examined. After p53 was silenced, the effects of plumbagin on proliferation, invasion, ferroptosis and SLC7A11 expression were assessed. A tumour-bearing nude mouse model was used to examine the effects of p53 silencing and/or plumbagin on tumour growth, ferroptosis and SLC7A11 expression. Results Plumbagin inhibited the proliferation of SW480 and HCT116 cells and their invasive and colony-forming abilities. It increased Fe2+ levels but significantly decreased GSH and GPX4 levels. When ferroptosis was inhibited, the effects of plumbagin on colon cancer cells were significantly alleviated. Plumbagin promoted the expression and phosphorylation of p53 and inhibited the mRNA and protein levels of SLC7A11. Silencing of p53 counteracted the effects of plumbagin on the ferroptosis and biological behaviour of SW480 and HCT116 cells. In mouse models of colon cancer, silencing of p53 attenuated the tumour-suppressing effects of plumbagin as well as its inhibitory effects on the protein level of SLC7A11 and restored the expression of GSH and GPX4. Conclusion Plumbagin promotes ferroptosis and inhibits cell proliferation and invasion by decreasing the protein expression of SLC7A11 through p53.
Collapse
Affiliation(s)
- Bingyi Wang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqi Kong
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixin Lv
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiqiang Wang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
5
|
Lin ES, Huang YH, Chung JC, Su HH, Huang CY. The Inhibitory Effects and Cytotoxic Activities of the Stem Extract of Nepenthes miranda against Single-Stranded DNA-Binding Protein and Oral Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112188. [PMID: 37299167 DOI: 10.3390/plants12112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The carnivorous pitcher plants of the genus Nepenthes exhibit many ethnobotanical uses, including treatments of stomachache and fever. In this study, we prepared different extracts from the pitcher, stem, and leaf extracts of Nepenthes miranda obtained using 100% methanol and analyzed their inhibitory effects on recombinant single-stranded DNA-binding protein (SSB) from Klebsiella pneumoniae (KpSSB). SSB is essential for DNA replication and cell survival and thus an attractive target for potential antipathogen chemotherapy. Different extracts prepared from Sinningia bullata, a tuberous member of the flowering plant family Gesneriaceae, were also used to investigate anti-KpSSB properties. Among these extracts, the stem extract of N. miranda exhibited the highest anti-KpSSB activity with an IC50 value of 15.0 ± 1.8 μg/mL. The cytotoxic effects of the stem extract of N. miranda on the survival and apoptosis of the cancer cell lines Ca9-22 gingival carcinoma, CAL27 oral adenosquamous carcinoma, PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were also demonstrated and compared. Based on collective data, the cytotoxic activities of the stem extract at a concentration of 20 μg/mL followed the order Ca9-22 > CAL27 > PC9 > 4T1 > B16F10 cells. The stem extract of N. miranda at a concentration of 40 μg/mL completely inhibited Ca9-22 cell migration and proliferation. In addition, incubation with this extract at a concentration of 20 μg/mL boosted the distribution of the G2 phase from 7.9% to 29.2% in the Ca9-22 cells; in other words, the stem extract might suppress Ca9-22 cell proliferation by inducing G2 cell cycle arrest. Through gas chromatography-mass spectrometry, the 16 most abundant compounds in the stem extract of N. miranda were tentatively identified. The 10 most abundant compounds in the stem extract of N. miranda were used for docking analysis, and their docking scores were compared. The binding capacity of these compounds was in the order sitosterol > hexadecanoic acid > oleic acid > plumbagin > 2-ethyl-3-methylnaphtho[2,3-b]thiophene-4,9-dione > methyl α-d-galactopyranoside > 3-methoxycatechol > catechol > pyrogallol > hydroxyhydroquinone; thus, sitosterol might exhibit the greatest inhibitory capacity against KpSSB among the selected compounds. Overall, these results may indicate the pharmacological potential of N. miranda for further therapeutic applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Jo-Chi Chung
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
6
|
Wójciak M, Feldo M, Stolarczyk P, Płachno BJ. Biological Potential of Carnivorous Plants from Nepenthales. Molecules 2023; 28:molecules28083639. [PMID: 37110873 PMCID: PMC10146735 DOI: 10.3390/molecules28083639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Since Charles Darwin and his book carnivorous plants have aroused interest and heated debate. In addition, there is growing interest in this group of plants as a source of secondary metabolites and in the application of their biological activity. The aim of this study was to trace the recent literature in search of the application of extracts obtained from families Droseraceae, Nepenthaceae, and Drosophyllaceae to show their biological potential. The data collected in the review clearly indicate that the studied Nepenthales species have great biological potential in terms of antibacterial, antifungal, antioxidant, anti-inflammatory, and anticancer use. We proposed that further investigations should include: (i) bioactivity-guided investigations of crude plant extract to connect a particular type of action with a specific compound or a group of metabolites; (ii) a search for new bioactive properties of carnivorous plants; (iii) establishment of molecular mechanisms associated with specific activity. Furthermore, further research should be extended to include less explored species, i.e., Drosophyllum lusitanicum and especially Aldrovanda vesiculosa.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| |
Collapse
|
7
|
Liu H, Zhang W, Jin L, Liu S, Liang L, Wei Y. Plumbagin Exhibits Genotoxicity and Induces G2/M Cell Cycle Arrest via ROS-Mediated Oxidative Stress and Activation of ATM-p53 Signaling Pathway in Hepatocellular Cells. Int J Mol Sci 2023; 24:ijms24076279. [PMID: 37047251 PMCID: PMC10094147 DOI: 10.3390/ijms24076279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, PLB), a naturally occurring naphthoquinone mainly isolated from the plant Plumbago zeylanica L., has been proven to possess anticancer activities towards multiple types of cancer. Although there has been an increasing amount of research regarding its anticancer effects, the association between oxidative stress, genotoxicity and the cell cycle arrest induced by PLB still remains unclear. Therefore, it is important to investigate their potential connections and the involvement of DNA damage and the ataxia telangiectasia mutated protein (ATM)-p53 signaling pathway in PLB’s anticancer mechanism. The present study showed that PLB exposure significantly reduced HCC cell viability and colony formation. In addition, PLB-induced G2/M cell cycle arrest, oxidative stress, and DNA damage was detected, which could be almost blocked by NAC pretreatment. PLB could trigger a DNA damage response by activating cell cycle checkpoints such as ATM, checkpoint kinase 1 (Chk1), checkpoint kinase 2 (Chk2) and p53. Meanwhile, the key modulator of the G2/M transition factor, Cell Division Cycle 25C (cdc25C), was significantly downregulated in an ROS-dependent manner. Furthermore, pretreatment with ATM and p53 inhibitors (KU55933 and Pifithrin-α) could reduce the occurrence of G2/M cell cycle arrest by inhibiting the activation of the ATM-p53 pathway. Taken together, these results indicate that ROS-mediated oxidative stress plays a key role in PLB-induced G2/M cell cycle arrest mediated by the ATM-p53 pathway.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Medical Molecular Biology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530024, China; (H.L.)
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
| | - Wenchao Zhang
- Research Center for Non-Food Biorefinery, Guangxi Academy of Science, Nanning 530001, China
| | - Lijie Jin
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shasha Liu
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liying Liang
- Laboratory of Medical Molecular Biology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530024, China; (H.L.)
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
| | - Yanfei Wei
- Guangxi Key Laboratory of Molecular Biology of Preventive Medicine of Traditional Chinese Medicine, Nanning 530024, China
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning 530200, China
- Correspondence:
| |
Collapse
|
8
|
Carnivorous Plants from Nepenthaceae and Droseraceae as a Source of Secondary Metabolites. Molecules 2023; 28:molecules28052155. [PMID: 36903400 PMCID: PMC10004607 DOI: 10.3390/molecules28052155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Carnivorous plants are able to attract small animals or protozoa and retain them in their specialized traps. Later, the captured organisms are killed and digested. The nutrients contained in the prey bodies are absorbed by the plants to use for growth and reproduction. These plants produce many secondary metabolites involved in the carnivorous syndrome. The main purpose of this review was to provide an overview of the secondary metabolites in the family Nepenthaceae and Droseraceae, which were studied using modern identification techniques, i.e., high-performance liquid chromatography or ultra-high-performance liquid chromatography with mass spectrometry and nuclear magnetic resonance spectroscopy. After literature screening, there is no doubt that tissues of species from the genera Nepenthes, Drosera, and Dionaea are rich sources of secondary metabolites that can be used in pharmacy and for medical purposes. The main types of the identified compounds include phenolic acids and their derivatives (gallic, protocatechuic, chlorogenic, ferulic, p-coumaric acids, gallic, hydroxybenzoic, vanillic, syringic caffeic acids, and vanillin), flavonoids (myricetin, quercetin, and kaempferol derivatives), including anthocyanins (delphinidin-3-O-glucoside, cyanidin-3-O-glucoside, and cyanidin), naphthoquinones (e.g., plumbagin, droserone, and 5-O-methyl droserone), and volatile organic compounds. Due to the biological activity of most of these substances, the importance of the carnivorous plant as a pharmaceutical crop will increase.
Collapse
|
9
|
Sidhu H, Capalash N. Plumbagin downregulates UHRF1, p-Akt, MMP-2 and suppresses survival, growth and migration of cervical cancer CaSki cells. Toxicol In Vitro 2023; 86:105512. [PMID: 36336213 DOI: 10.1016/j.tiv.2022.105512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Plumbagin is a natural compound known to impede growth of cancerous cells. However, anti-cervical cancer effects of plumbagin and its underlying molecular mechanism still remains elusive. In this study, plumbagin reduced the viability of CaSki cells in a concentration dependent manner and suppressed their colony formation potential. It led to G2/M phase arrest with downregulation of E2F1 and upregulation of p21. Plumbagin reduced mitochondrial membrane potential and concomitantly increased the percentage of apoptotic cells as revealed by annexin V-propidium iodide staining. Real Time PCR and western blotting confirmed that plumbagin induced apoptosis by reducing the expression of pAkt, procaspase 9 and full-length PARP. Furthermore, scratch assay showed that plumbagin suppressed migratory potential of CaSki cells which could be due to the reduced expression and activity of MMP-2 and upregulation of TIMP2. Interestingly, plumbagin also downregulated UHRF1 expression. Transient silencing of UHRF1 like plumbagin, induced G2/M phase arrest, enhanced apoptosis and suppressed metastasis of CaSki cells suggesting the role of UHRF1 in mediating anti-cancer activities of plumbagin. Plumbagin at IC20 (1 μM) interacted synergistically with cisplatin and reduced its IC50 value by 13.23 fold with improved effectivity as revealed by augmented apoptosis in CaSki cells.
Collapse
Affiliation(s)
- Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
10
|
Lin ES, Huang CY. Cytotoxic Activities and the Allantoinase Inhibitory Effect of the Leaf Extract of the Carnivorous Pitcher Plant Nepenthes miranda. PLANTS (BASEL, SWITZERLAND) 2022; 11:2265. [PMID: 36079647 PMCID: PMC9460348 DOI: 10.3390/plants11172265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Nepenthes are carnivorous pitcher plants that have several ethnobotanical uses, such as curing stomachache and fever. Here, we prepared different extracts from the stem, leaf, and pitcher of Nepenthes miranda to further investigate their pharmacological potential. The leaf extract of N. miranda obtained by 100% acetone (N. miranda-leaf-acetone) was used in this study to analyze the cytotoxic activities, antioxidation capacity, antibacterial activity, and allantoinase (ALLase) inhibitory effect of this plant. The cytotoxic effects of N. miranda-leaf-acetone on the survival, apoptosis, and migration of the cancer cell lines PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were demonstrated. Based on collective data, the cytotoxic activities of N. miranda-leaf-acetone followed the order: B16F10 > 4T1 > PC-9 cells. In addition, the cytotoxic activities of N. miranda-leaf-acetone were synergistically enhanced when co-acting with the clinical anticancer drug 5-fluorouracil. N. miranda-leaf-acetone could also inhibit the activity of ALLase, a key enzyme in the catabolism pathway for purine degradation. Through gas chromatography−mass spectrometry, the 16 most abundant ingredients in N. miranda-leaf-acetone were identified. The top six compounds in N. miranda-leaf-acetone, namely, plumbagin, lupenone, palmitic acid, stigmast-5-en-3-ol, neophytadiene, and citraconic anhydride, were docked to ALLase, and their docking scores were compared. The docking results suggested plumbagin and stigmast-5-en-3-ol as potential inhibitors of ALLase. Overall, these results may indicate the pharmacological potential of N. miranda for further medical applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
11
|
Vijayan S, Loganathan C, Sakayanathan P, Thayumanavan P. Synthesis and Characterization of Plumbagin S-Allyl Cysteine Ester: Determination of Anticancer Activity In Silico and In Vitro. Appl Biochem Biotechnol 2022; 194:5827-5847. [PMID: 35819687 DOI: 10.1007/s12010-022-04079-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
In recent years, derivatives of natural compounds are synthesized to increase the bioavailability, pharmacology, and pharmacokinetics properties. The naphthoquinone, plumbagin (PLU), is well known for its anticancer activity. However, the clinical use of PLU is hindered due to its toxicity. Previous reports have shown that modification of PLU at 5'-hydroxyl group has reduced its toxicity towards normal cell line. In accordance, in the present study, 5'-hydroxyl group of PLU was esterified with S-allyl cysteine (SAC) to obtain PLU-SAC ester. The drug-likeness of PLU-SAC was understood by in silico ADME analysis. PLU-SAC was characterized by UV-visible spectroscopy, mass spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Molecular docking and dynamics simulation analysis revealed the interaction of PLU-SAC with proteins of interest in cancer therapy such as human estrogen receptor α, tumor protein p53 negative regulator mouse double minute 2, and cyclin-dependent kinase 2. MMGBSA calculation showed the favorable binding energy which in turn demonstrated the stable binding of PLU-SAC with these proteins. PLU-SAC showed apoptosis in breast cancer cell line (MCF-7) by inducing oxidative stress, disturbing mitochondrial function, arresting cells at G1 phase of cell cycle, and initiating DNA fragmentation. However, PLU-SAC did not show toxicity towards normal Vero cell line. PLU-SAC was synthesized and structurally characterized, and its anticancer activity was determined by in silico and in vitro analysis.
Collapse
Affiliation(s)
- Sudha Vijayan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Chitra Loganathan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, 636011, India.,Research and Development Center, Bioinnov Solutions LLP, Salem, Tamil Nadu, 636002, India
| | | | | |
Collapse
|
12
|
Huang YH, Chiang WY, Chen PJ, Lin ES, Huang CY. Anticancer and Antioxidant Activities of the Root Extract of the Carnivorous Pitcher Plant Sarracenia purpurea. PLANTS (BASEL, SWITZERLAND) 2022; 11:1668. [PMID: 35807620 PMCID: PMC9269354 DOI: 10.3390/plants11131668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 05/27/2023]
Abstract
The carnivorous pitcher plant Sarracenia purpurea exhibits many ethnobotanical uses, including the treatments of type 2 diabetes and tuberculosis-like symptoms. In this study, we prepared different extracts from the leaves (pitchers), stems, and roots of S. purpurea and investigated their antioxidant and anticancer properties. To evaluate the extraction efficiency, we individually used different solvents, namely methanol, ethanol, acetone, and distilled water, for S. purpurea extract preparations. The root extract of S. purpurea, obtained by 100% acetone (S. purpurea-root-acetone), had the highest anticancer activities, antioxidation capacity (the DPPH activity with IC50 of 89.3 ± 2.2 μg/mL), antibacterial activities, total phenolic content (33.4 ± 0.7 mg GAE/g), and total flavonoid content (107.9 ± 2.2 mg QUE/g). The most abundant compounds in S. purpurea-root-acetone were identified using gas chromatography-mass spectrometry; 7,8-Dihydro-α-ionone was the major compound present in S. purpurea-root-acetone. In addition, the co-cytotoxicity of S. purpurea-root-acetone (combined with the clinical anticancer drug 5-fluorouracil (5-FU) on the survival, apoptosis, proliferation, and migration of the 4T1 mammary carcinoma) was examined. The combination of 5-FU with S. purpurea-root-acetone could be highly efficient for anti-4T1 cells. We also found that S. purpurea-root-acetone could inhibit the enzymatic activity of human dihydroorotase (huDHOase), an attractive target for potential anticancer chemotherapy. The sic most abundant compounds in S. purpurea-root-acetone were tested using an in silico analysis via MOE-Dock software for their binding affinities. The top-ranked docking conformations were observed for 7,8-dihydro-α-ionone and stigmast-5-en-3-ol, suggesting the inhibition potential against huDHOase. Overall, the collective data in this study may indicate the pharmacological potentials of S. purpurea-root-acetone for possible medical applications.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - Wei-Yu Chiang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - Pin-Jui Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan; (Y.-H.H.); (W.-Y.C.); (P.-J.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
13
|
Shahrajabian MH, Cheng Q, Sun W. The Organic Life According to Traditional Chinese Medicine with Anticancer Approaches. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1871520622666220425093907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The aim of this review was to summarize the most important traditional medinical
herbs and plants that are being used in different parts of the world with a focus on a green anticancer approach. The most important impacts of medicinal plants on cancer treatments are prevention of cancer occurrence, decreased side effects, ameliorated post-operative complications,
reduced post operative recurrence, reduced tumor growth, maintenance therapy, reduced symptoms and prolonged survival. Alkaloid anti-cancer compounds are pyrrolidine, pyridine, tropane,
piperidine, pyrrolizidine, quinolizidine, indolizidine, isoquinoline, oxazole, isoxazole, quinazoline, quinoline, indole serine, purine, β -phenylethylamine, colchicine, benzylamine, abornin,
pancratistatin and narciclasine. Anticancer phenolic compounds from plants are flavonol, flavones, kaempferol, luteolin, curcumin, apigenin, chalcone, and cafestol. Anticancer terpenoids
compounds from medicinal plants are isoprene, alpha-hederin, galanal A, galanal B, carnosol,
oleanane and xanthorrhizol. The most important chemical structures of anti-cancer drugs derived
from plants are vincristine, vinblastine, vinorelbine, vindesine, vinflunine, paclitaxel, docetaxel,
cabazitaxel, larotaxel, milataxel, ortataxel, tesetaxel, camptothecin, irinotecan, topotecan, etoposide, teniposide, harringtonine and homoharringtonine. Cancer is one of the main and primary
causes of morbidity and mortality all over the world. It is a broad group of various diseases typified by unregulated cell growth. The role of plants, especially traditional herbs as a source of organic medicines has been prevalent in many societies, especially in Eastern medicinal science for
thousands of years. Traditional medicinal herbs and plants which have both antiviral activity and
the ability to promote immunity, would have possible inhibition ability in the initiation and promotion of virus-associated cancers. Medicinal plants should always be considered a great source
of novel chemical constituents with anti-cancer effects.
Collapse
Affiliation(s)
| | - Qi Cheng
- College of Life
Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for
BioAl-Manufacturing, Baoding, Hebei 071000, China
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Tanigawa K, Kiriya M, Hayashi Y, Shinden Y, Kijima Y, Natsugoe S, Sumimoto T, Morimoto-Kamata R, Yui S, Hama K, Yokoyama K, Nakamura Y, Suzuki K, Nojiri H, Inoue K, Karasawa K. Cathepsin G-induced malignant progression of MCF-7 cells involves suppression of PAF signaling through induced expression of PAFAH1B2. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159164. [PMID: 35462067 DOI: 10.1016/j.bbalip.2022.159164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Breast cancer is primarily classified into ductal and lobular types, as well as into noninvasive and invasive cancer. Invasive cancer involves lymphatic and hematogenous metastasis. In breast cancer patients with distant metastases, a neutrophil-derived serine protease; cathepsin G (Cat G), is highly expressed in breast cancer cells. Cat G induces cell migration and multicellular aggregation of MCF-7 human breast cancer cells; however, the mechanism is not clear. Recently, platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), the enzyme responsible for PAF degradation, was reported to be overexpressed in some tumor types, including pancreatic and breast cancers. In this study, we investigated whether PAF-AH is involved in Cat G-induced aggregation and migration of MCF-7 cells. We first showed that Cat G increased PAF-AH activity and elevated PAFAH1B2 expression in MCF-7 cells. The elevated expression of PAFAH1B2 was also observed in human breast cancer tissue specimens by immunohistochemical analysis. Furthermore, knockdown of PAFAH1B2 in MCF-7 cells suppressed the cell migration and aggregation induced by low concentrations, but not high concentrations, of Cat G. Carbamoyl PAF (cPAF), a nonhydrolyzable PAF analog, completely suppressed Cat G-induced migration of MCF-7 cells. In addition, PAF receptor (PAFR) inhibition induced cell migration of MCF-7 cells even in the absence of Cat G, suggesting that Cat G suppresses the activation of PAFR through enhanced PAF degradation due to elevated expression of PAFAH1B2 and thereby induces malignant phenotypes in MCF-7 cells. Our findings may lead to a novel therapeutic modality for treating breast cancer by modulating the activity of Cat G/PAF signaling.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasuhiro Hayashi
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima-shi, Kagoshima 890-8580, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Kagoshima-shi, Kagoshima 890-8580, Japan; Department of Breast Surgery, School of Medicine, Fujita Health University, Toyooka-shi, Aichi 470-1192, Japan
| | - Shoji Natsugoe
- Department of Neurosurgery, Kajiki-Onsen Hospital, Aira-shi, Kagoshima 899-5241, Japan
| | - Takahiro Sumimoto
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Oita 879-5593, Japan
| | - Riyo Morimoto-Kamata
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Satoru Yui
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kotaro Hama
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasuhiro Nakamura
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hisao Nojiri
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Keizo Inoue
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ken Karasawa
- Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
15
|
The Effectiveness of Isoplumbagin and Plumbagin in Regulating Amplitude, Gating Kinetics, and Voltage-Dependent Hysteresis of erg-mediated K+ Currents. Biomedicines 2022; 10:biomedicines10040780. [PMID: 35453530 PMCID: PMC9029050 DOI: 10.3390/biomedicines10040780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Isoplumbagin (isoPLB, 5-hydroxy-3-methyl-1,4-naphthoquinone), a naturally occurring quinone, has been observed to exercise anti-inflammatory, antimicrobial, and antineoplastic activities. Notably, whether and how isoPLB, plumbagin (PLB), or other related compounds impact transmembrane ionic currents is not entirely clear. In this study, during GH3-cell exposure to isoPLB, the peak and sustained components of an erg (ether-à-go-go related gene)-mediated K+ current (IK(erg)) evoked with long-lasting-step hyperpolarization were concentration-dependently decreased, with a concomitant increase in the decaying time constant of the deactivating current. The presence of isoPLB led to a differential reduction in the peak and sustained components of deactivating IK(erg) with effective IC50 values of 18.3 and 2.4 μM, respectively, while the KD value according to the minimum binding scheme was estimated to be 2.58 μM. Inhibition by isoPLB of IK(erg) was not reversed by diazoxide; however, further addition of isoPLB, during the continued exposure to 4,4′-dithiopyridine, did not suppress IK(erg) further. The recovery of IK(erg) by a two-step voltage pulse with a geometric progression was slowed in the presence of isoPLB, and the decaying rate of IK(erg) activated by the envelope-of-tail method was increased in its presence. The strength of the IK(erg) hysteresis in response to an inverted isosceles-triangular ramp pulse was diminished by adding isoPLB. A mild inhibition of the delayed-rectifier K+ current (IK(DR)) produced by the presence of isoPLB was seen in GH3 cells, while minimal changes in the magnitude of the voltage-gated Na+ current were demonstrated in its presence. Moreover, the IK(erg) identified in MA-10 Leydig tumor cells was blocked by adding isoPLB. Therefore, the effects of isoPLB or PLB on ionic currents (e.g., IK(erg) and IK(DR)) demonstrated herein would be upstream of our previously reported perturbations on mitochondrial morphogenesis or respiration. Taken together, the perturbations of ionic currents by isoPLB or PLB demonstrated herein are likely to contribute to the underlying mechanism through which they, or other structurally similar compounds, result in adjustments in the functional activities of different neoplastic cells (e.g., GH3 and MA-10 cells), presuming that similar in vivo observations occur.
Collapse
|
16
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
17
|
Liu W, Lin LC, Wang PJ, Chen YN, Wang SC, Chuang YT, Tsai IH, Yu SY, Chang FR, Cheng YB, Huang LC, Huang MY, Chang HW. Nepenthes Ethyl Acetate Extract Provides Oxidative Stress-Dependent Anti-Leukemia Effects. Antioxidants (Basel) 2021; 10:antiox10091410. [PMID: 34573042 PMCID: PMC8464713 DOI: 10.3390/antiox10091410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Several kinds of solvents have been applied to Nepenthes extractions exhibiting antioxidant and anticancer effects. However, they were rarely investigated for Nepenthes ethyl acetate extract (EANT), especially leukemia cells. The purpose of the present study was to evaluate the antioxidant properties and explore the antiproliferation impact and mechanism of EANT in leukemia cells. Five standard assays demonstrated that EANT exhibits antioxidant capability. In the cell line model, EANT dose-responsively inhibited cell viabilities of three leukemia cell lines (HL-60, K-562, and MOLT-4) based on 24 h MTS assays, which were reverted by pretreating oxidative stress and apoptosis inhibitors (N-acetylcysteine and Z-VAD-FMK). Due to similar sensitivities among the three cell lines, leukemia HL-60 cells were chosen for exploring antiproliferation mechanisms. EANT caused subG1 and G1 cumulations, triggered annexin V-detected apoptosis, activated apoptotic caspase 3/7 activity, and induced poly ADP-ribose polymerase expression. Moreover, reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane depolarization were generated by EANT, which was reverted by N-acetylcysteine. The antioxidant response to oxidative stress showed that EANT upregulated mRNA expressions for nuclear factor erythroid 2-like 2 (NFE2L2), catalase (CAT), thioredoxin (TXN), heme oxygenase 1 (HMOX1), and NAD(P)H quinone dehydrogenase 1 (NQO1) genes. Moreover, these oxidative stresses led to DNA damage (γH2AX and 8-hydroxy-2-deoxyguanosine) and were alleviated by N-acetylcysteine. Taken together, EANT demonstrated oxidative stress-dependent anti-leukemia ability to HL-60 cells associated with apoptosis and DNA damage.
Collapse
Affiliation(s)
- Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Pei-Ju Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Yan-Ning Chen
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.Y.); (F.-R.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.Y.); (F.-R.C.)
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Li-Chen Huang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-Y.H.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (M.-Y.H.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.-J.W.); (Y.-N.C.); (S.-C.W.); (Y.-T.C.); (I.-H.T.); (L.-C.H.)
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-Y.H.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 7158) (M.-Y.H.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
18
|
Yang KH, Tang JY, Chen YN, Chuang YT, Tsai IH, Chiu CC, Li LJ, Chien TM, Cheng YB, Chang FR, Yen CY, Chang HW. Nepenthes Extract Induces Selective Killing, Necrosis, and Apoptosis in Oral Cancer Cells. J Pers Med 2021; 11:871. [PMID: 34575651 PMCID: PMC8469227 DOI: 10.3390/jpm11090871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Ethyl acetate Nepenthes extract (EANT) from Nepenthes thorellii × (ventricosa × maxima) shows antiproliferation and apoptosis but not necrosis in breast cancer cells, but this has not been investigated in oral cancer cells. In the present study, EANT shows no cytotoxicity to normal oral cells but exhibits selective killing to six oral cancer cell lines. They were suppressed by pretreatment of the antioxidant inhibitor N-acetylcysteine (NAC), demonstrating that EANT-induced cell death was mediated by oxidative stress. Concerning high sensitivity to EANT, Ca9-22 and CAL 27 oral cancer cells were chosen for exploring detailed selective killing mechanisms. EANT triggers a mixture of necrosis and apoptosis as determined by annexin V/7-aminoactinmycin D analysis. Still, they show differential switches from necrosis at a low (10 μg/mL) concentration to apoptosis at high (25 μg/mL) concentration of EANT in oral cancer cells. NAC induces necrosis but suppresses annexin V-detected apoptosis in oral cancer cells. Necrostatin 1 (NEC1), a necroptosis inhibitor, moderately suppresses necrosis but induces apoptosis at 10 μg/mL EANT. In contrast, Z-VAD-FMK, a pancaspase inhibitor, slightly causes necrosis but suppresses apoptosis at 10 μg/mL EANT. Furthermore, the flow cytometry-detected pancaspase activity is dose-responsively increased but is suppressed by NAC and ZVAD, although not for NEC1 in oral cancer cells. EANT causes several oxidative stress events such as reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane depolarization. In response to oxidative stresses, the mRNA for antioxidant signaling, such as nuclear factor erythroid 2-like 2 (NFE2L2), catalase (CAT), heme oxygenase 1 (HMOX1), and thioredoxin (TXN), are overexpressed in oral cancer cells. Moreover, EANT also triggers DNA damage, as detected by γH2AX and 8-oxo-2'-deoxyguanosine adducts. The dependence of oxidative stress is validated by the evidence that NAC pretreatment reverts the changes of cellular and mitochondrial stress and DNA damage. Therefore, EANT exhibits antiproliferation involving an oxidative stress-dependent necrosis/apoptosis switch and DNA damage in oral cancer cells.
Collapse
Affiliation(s)
- Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yan-Ning Chen
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Li-Jie Li
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
| | - Tsu-Ming Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Fang-Rong Chang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-N.C.); (Y.-T.C.); (I.-H.T.); (L.-J.L.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
19
|
Roy A. Plumbagin: A Potential Anti-cancer Compound. Mini Rev Med Chem 2021; 21:731-737. [PMID: 33200707 DOI: 10.2174/1389557520666201116144421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
Cancer is a deadly disease, which has significantly increased in both developed and developing nations. Treatment of cancer utilizing radiotherapy or chemotherapy actuates a few issues which incorporate spewing, sickness, unpalatable reactions, and so forth. In this specific situation, an alternative drug source, which can effectively treat cancer is of prime importance. Products that are obtained from plant sources are utilized for the treatment of various diseases due to their non-harmful nature. Medicinal plants contain different bioactive compounds, which possess an important role in the prevention of different diseases such as cancer. Plumbagin is a bioactive compound, which is mainly present in Plumbaginaceae family and has been explored for its anticancer activity. Plumbagin basically inactivates the Akt/NF-kB, MMP-9 and VEGF pathways that are essential for cancer cell development. Therefore, it is important to review the role of plumbagin in different cancer cells in order to find an alternative drug to overcome this disease. The present review provides a summary of anticancer activity of plumbagin in various cancers and its mode of action.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| |
Collapse
|
20
|
Jiang ZB, Xu C, Wang W, Zhang YZ, Huang JM, Xie YJ, Wang QQ, Fan XX, Yao XJ, Xie C, Wang XR, Yan PY, Ma YP, Wu QB, Leung ELH. Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8 + T cells. Pharmacol Res 2021; 169:105656. [PMID: 33964470 DOI: 10.1016/j.phrs.2021.105656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8+ T cells in KRASLA2 mice model and the LLC1 xenograft. Our findings suggest that PLB exerts potent antitumor activity against NSCLC in vitro and in vivo through ARF1 downregulation and induction of antitumor immune response, indicating that PLB is a new novel therapeutic candidate for the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Ze-Bo Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Cong Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Wenjun Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Yi-Zhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Ju-Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Ya-Jia Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Qian-Qian Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Xiao-Jun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Chun Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Xuan-Run Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Pei-Yu Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Yu-Po Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; Department of Pathology, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | - Qi-Biao Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China.
| | - Elaine Lai-Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
21
|
Guan HH, Huang YH, Lin ES, Chen CJ, Huang CY. Plumbagin, a Natural Product with Potent Anticancer Activities, Binds to and Inhibits Dihydroorotase, a Key Enzyme in Pyrimidine Biosynthesis. Int J Mol Sci 2021; 22:6861. [PMID: 34202294 PMCID: PMC8267945 DOI: 10.3390/ijms22136861] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Dihydroorotase (DHOase) is the third enzyme in the de novo biosynthesis pathway for pyrimidine nucleotides, and an attractive target for potential anticancer chemotherapy. By screening plant extracts and performing GC-MS analysis, we identified and characterized that the potent anticancer drug plumbagin (PLU), isolated from the carnivorous plant Nepenthes miranda, was a competitive inhibitor of DHOase. We also solved the complexed crystal structure of yeast DHOase with PLU (PDB entry 7CA1), to determine the binding interactions and investigate the binding modes. Mutational and structural analyses indicated the binding of PLU to DHOase through loop-in mode, and this dynamic loop may serve as a drug target. PLU exhibited cytotoxicity on the survival, migration, and proliferation of 4T1 cells and induced apoptosis. These results provide structural insights that may facilitate the development of new inhibitors targeting DHOase, for further clinical anticancer chemotherapies.
Collapse
Affiliation(s)
- Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan;
| | - Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No. 193, Sec.1, San-Min Rd., Taichung City 403, Taiwan;
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan;
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300193, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan
| |
Collapse
|
22
|
Jiang ZB, Wang WJ, Xu C, Xie YJ, Wang XR, Zhang YZ, Huang JM, Huang M, Xie C, Liu P, Fan XX, Ma YP, Yan PY, Liu L, Yao XJ, Wu QB, Lai-Han Leung E. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett 2021; 515:36-48. [PMID: 34052328 DOI: 10.1016/j.canlet.2021.05.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
Upregulated expression of immune checkpoint molecules correlates with exhausted phenotype and impaired function of cytotoxic T cells to evade host immunity. By disrupting the interaction of PD-L1 and PD1, immune checkpoint inhibitors can restore immune system function against cancer cells. Growing evidence have demonstrated apigenin and luteolin, which are flavonoids abundant in common fruits and vegetables, can suppress growth and induce apoptosis of multiple types of cancer cells with their potent anti-inflammatory, antioxidant and anticancer properties. In this study, the effects and underlying mechanisms of luteolin, apigenin, and anti-PD-1 antibody combined with luteolin or apigenin on the PD-L1 expression and anti-tumorigenesis in KRAS-mutant lung cancer were investigated. Luteolin and apigenin significantly inhibited lung cancer cell growth, induced cell apoptosis, and down-regulated the IFN-γ-induced PD-L1 expression by suppressing the phosphorylation of STAT3. Both luteolin and apigenin showed potent anti-cancer activities in the H358 xenograft and Lewis lung carcinoma model in vivo, and the treatment with monoclonal PD1 antibody enhanced the infiltration of T cells into tumor tissues. Apigenin exhibited anti-tumor activity in Genetically engineered KRASLA2 mice. In conclusion, both apigenin and luteolin significantly suppressed lung cancer with KRAS mutant proliferation, and down-regulated the IFN-γ induced PD-L1 expression. Treatment with the combination of PD-1 blockade and apigenin/luteolin has a synergistic effect and might be a prospective therapeutic strategy for NSCLC with KRAS-mutant.
Collapse
Affiliation(s)
- Ze-Bo Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Wen-Jun Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Cong Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ya-Jia Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Xuan-Run Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Yi-Zhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Ju-Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Min Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Chun Xie
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Pei Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Xing-Xing Fan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Yu-Po Ma
- Department of Internal Medicine, Stony Brook Medicine, Stony Brook University Medical Center, Stony Brook, NY, 11794, USA; Research & Development Division, iCell Gene Therapeutics LLC, Stony Brook, NY, USA
| | - Pei-Yu Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China
| | - Xiao-Jun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| | - Qi-Biao Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China.
| | - Elaine Lai-Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Macao, Taipa, Macau (SAR), China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China; Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai City, Guangdong, China.
| |
Collapse
|
23
|
Yin Z, Zhang J, Chen L, Guo Q, Yang B, Zhang W, Kang W. Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6940953. [PMID: 33344645 PMCID: PMC7725562 DOI: 10.1155/2020/6940953] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Plumbagin (PLB), a natural naphthoquinone constituent isolated from the roots of the medicinal plant Plumbago zeylanica L., exhibited anticancer activity against a variety of cancer cell lines including breast cancer, hepatoma, leukemia, melanoma, prostate cancer, brain tumor, tongue squamous cell carcinoma, esophageal cancer, oral squamous cell carcinoma, lung cancer, kidney adenocarcinoma, cholangiocarcinoma, gastric cancer, lymphocyte carcinoma, osteosarcoma, and canine cancer. PLB played anticancer activity via many molecular mechanisms, such as targeting apoptosis, autophagy pathway, cell cycle arrest, antiangiogenesis pathway, anti-invasion, and antimetastasis pathway. Among these signaling pathways, the key regulatory genes regulated by PLB were NF-kβ, STAT3, and AKT. PLB also acted as a potent inducer of reactive oxygen species (ROS), suppressor of cellular glutathione, and novel proteasome inhibitor, causing DNA double-strand break by oxidative DNA base damage. This review comprehensively summarizes the anticancer activity and mechanism of PLB.
Collapse
Affiliation(s)
- Zhenhua Yin
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Juanjuan Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Lin Chen
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Qingfeng Guo
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Baocheng Yang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou 450063, China
| | - Wei Zhang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
| | - Wenyi Kang
- Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, China
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
24
|
Zhang R, Wang Z, You W, Zhou F, Guo Z, Qian K, Xiao Y, Wang X. Suppressive effects of plumbagin on the growth of human bladder cancer cells via PI3K/AKT/mTOR signaling pathways and EMT. Cancer Cell Int 2020; 20:520. [PMID: 33117085 PMCID: PMC7590591 DOI: 10.1186/s12935-020-01607-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background Novel chemotherapeutic drugs with good anti-tumor activity are of pressing need for bladder cancer treatment. In this study, plumbagin (PL), a natural plant-derived drug extracted from Chinese herbals, was identified as a promising candidate for human bladder cancer (BCa) chemotherapy. Methods The anti-tumor activity of PL was evaluated using a series of in vitro experiments, such as MTT, transwell assay, flow cytometry, quantitative real-time PCR (qRT-PCR) and western blotting. We established xenograft tumors in nude mice by subcutaneous injection with the human bladder cancer T24 cells. Results The results showed that PL could inhibit the proliferation, migration and survival of BCa cells (T24 and UMUC3 cells) in a time- and dose-dependent way. We found PL promotes the cell cycle arrest and apoptosis by inhibiting PI3K/AKT/mTOR signaling pathway, which inhibits cell proliferation. In vivo, anti-tumor activity of PL was further investigated using a BCa cell xenograft mice model. To simulate clinical chemotherapy, the PL were intravenously injected with a dose of 10 mg/kg for 10 times. Compared with the blank control, the tumor weight in PL treated group decreased significantly from 0.57 ± 0.04 g to 0.21 ± 0.06 g (P < 0.001). Conclusions In our study. We found PL inhibits the proliferation of T24 and UMUC3 cells in vivo and in vitro, which may play a role through several downstream effectors of PI3K/AKT/mTOR signaling pathway to promote the cell cycle arrest and apoptosis. Meanwhile, we consider that PL may inhibit the migration of bladder cancer cells via EMT suppression and induce ROS generation to make cell apoptosis. This work screened out a novel chemotherapeutic drug (plumbagin) with relatively good anti-tumor activity, which possessed great potential in BCa chemotherapy.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China
| | - Zijian Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People's Republic of China
| | - Wenjie You
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China
| | - Fengfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China
| | - Zicheng Guo
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000 People's Republic of China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071 People's Republic of China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071 People's Republic of China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Cancer Precision Diagnosis and Treatment and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 People's Republic of China.,Research Center of Wuhan for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071 People's Republic of China
| |
Collapse
|
25
|
Xin Y, Li S, Jiang Q, Hu F, He Y, Zhang J. Establishment of a Jaw Fibrosarcoma Patient-Derived Xenograft and Evaluation of the Tumor Suppression Efficacy of Plumbagin Against Jaw Fibrosarcoma. Front Oncol 2020; 10:1479. [PMID: 32974176 PMCID: PMC7481444 DOI: 10.3389/fonc.2020.01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Head and neck fibrosarcoma is a rare malignant tumor, accounting for about 1% of all head and neck tumors. It can also occur in the jaw bone, for which surgical resection is the main treatment but the recurrence rate is high and the prognosis is usually poor. Due to the lack of models mimicking the biological characteristics of the tumor, there is little progress in the research of the pathogenesis and treatment of fibrosarcoma. Therefore, there is an urgent need to explore a high-fidelity model that can reflect the biological characteristics of fibrosarcoma for the sake of improving the therapeutic outcome and prognosis, and preventing recurrence. Patient-derived xenografts (PDX) may more accurately reflect the human disease, and is an attractive platform to study disease biology and develop treatments and biomarkers. In this study we describe the establishment of jaw fibrosarcoma PDX models and compare PDX tumors to those of human origin. Methods: Tumor biopsies from a patient with jaw fibrosarcoma were implanted in immunodeficient mice. Primary and PDX tumors were characterized extensively by histology, immunohistochemistry and humanized identification. Based on the finding of our previous preliminary research that plumbagin had an anti-tumor effect against head and neck cancer, we used this model in the present study to evaluate the anti-tumor effect of plumbagin on jaw fibrosarcoma. Results: The established PDX model maintained the histological and immunohistochemical characteristics of the primary tumor. Plumbagin significantly inhibited the tumor growth in the jaw fibrosarcoma PDX model. Conclusion: We successfully established a PDX model of jaw fibrosarcoma and demonstrated that this PDX model preserved the important molecular characteristics of the human primary tumor, thus providing a powerful tool for treatment research and new drug development of jaw fibrosarcoma. In addition, plumbagin was found to have an inhibitory effect on the growth of PDX modeled jaw fibrosarcoma, which provides a preliminary research basis for its clinical application.
Collapse
Affiliation(s)
- Yuqi Xin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical College, Nanchang University, Nanchang, China
| | - Shiya Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical College, Nanchang University, Nanchang, China
| | - Qingkun Jiang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical College, Nanchang University, Nanchang, China
| | - Fangling Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanqiao He
- Laboratory Animal Science Center of Nanchang University, Nanchang, China.,Key Laboratory of Experimental Animals of Jiangxi, Nanchang, China.,Nanchang Royo Biotechnology, Nanchang, China
| | - Jie Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Xu C, Huang X, Tong Y, Feng X, Wang Y, Wang C, Jiang Y. Icariin modulates the sirtuin/NF‑κB pathway and exerts anti‑aging effects in human lung fibroblasts. Mol Med Rep 2020; 22:3833-3839. [PMID: 33000191 PMCID: PMC7533484 DOI: 10.3892/mmr.2020.11458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Icariin (ICA) has been used as a promising anti‑aging drug; however, its underlying molecular mechanism is yet to be elucidated. The present study aimed to determine the anti‑aging molecular mechanisms of ICA. D‑galactose (D‑gal) was used to generate a cell aging model. IMR‑90 human lung fibroblasts were pretreated with different concentrations of ICA (1, 2, 4, 8 and 16 µmol/l) for 6 h and subsequently incubated with D‑gal (200 mmol/l) at 37˚C for 72 h. Senescence of IMR‑90 cells was assessed by senescence‑associated‑β‑galactosidase (SA‑β‑Gal) staining assay. Cell viability, and the expression levels of p53/p21, sirtuin (SIRT) 1/6 and p50/p65 were determined via the MTT assay and western blotting respectively. The results demonstrated that D‑gal notably increased the proportion of SA‑β‑Gal‑positive cells and decreased the viability of IMR‑90 cells; however, pretreatment with ICA reversed the effects of D‑gal on IMR‑90 cells in a concentration‑dependent manner. Furthermore, it was also demonstrated that the activation of p53/p21 and nuclear factor‑κB (NF‑κB) signaling, and downregulation of SIRT1/6 may be involved in IMR‑90 cells, in D‑gal‑induced aging and ICA may effectively prevent IMR‑90 cells from these changes induced by D‑gal. Taken together, the results of the present study suggest that the anti‑aging molecular mechanisms of ICA may be associated with the regulation of the SIRT1/NF‑κB pathway.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Xuqing Huang
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yueyang Tong
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Xiaocheng Feng
- Department of Endocrinology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yan Wang
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Cancan Wang
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yuyue Jiang
- Department of Respiration, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
27
|
Plumbagin promotes mitochondrial mediated apoptosis in gefitinib sensitive and resistant A549 lung cancer cell line through enhancing reactive oxygen species generation. Mol Biol Rep 2020; 47:4155-4168. [DOI: 10.1007/s11033-020-05464-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/25/2020] [Indexed: 01/06/2023]
|
28
|
Kim KS, Jiang C, Kim JY, Park JH, Kim HR, Lee SH, Kim HS, Yoon S. Low-Dose Crizotinib, a Tyrosine Kinase Inhibitor, Highly and Specifically Sensitizes P-Glycoprotein-Overexpressing Chemoresistant Cancer Cells Through Induction of Late Apoptosis in vivo and in vitro. Front Oncol 2020; 10:696. [PMID: 32528877 PMCID: PMC7247847 DOI: 10.3389/fonc.2020.00696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
We investigated possible conditions or drugs that could target P-glycoprotein (P-gp)-overexpressing drug-resistant KBV20C cancer cells. Specifically, we focused on identifying a single treatment with a relatively low half maximal inhibitory concentration (IC50). Our approach utilized repurposing drugs, which are already used in clinical practice. We evaluated 13 TKIs (gefitinib, imatinib, erlotinib, nilotinib, pazopanib, masatinib, sunitinib, sorafenib, regorafenib, lapatinib, vandetanib, cediranib, and crizotinib) for their sensitizing effects on P-gp-overexpressing drug-resistant KBV20C cells. We found that crizotinib had a much greater sensitization effect than the other tested drugs at relatively low doses. In a detailed quantitative analysis using both lower doses and time-duration treatments, we demonstrated that crizotinib, which increased the levels of apoptosis and G2 arrest, was the best TKI to induce sensitization in P-gp-overexpressing KBV20C cells. Upon comparing resistant KBV20C cells and sensitive KB parent cells, crizotinib was found to markedly sensitize drug-resistant KBV20C cancer cells compared with other TKIs. This suggests that crizotinib is a resistant cancer cell-sensitizing drug that induces apoptosis. In mice bearing xenografted P-gp-overexpressing KBV20C cells, we confirmed that crizotinib significantly reduced tumor growth and weight, without apparent side effects. In addition, although lapatinib and crizotinib have a high P-gp inhibitory activity, we found that co-treatment with crizotinib and vincristine (VIC) did not have much of a sensitization effect on KBV20C cells, whereas lapatinib had a high sensitization effect on VIC-treated KBV20C cells. This suggests that crizotinib is a single-treatment specific drug for resistant cancer cells. These findings provide valuable information regarding the sensitization of drug-resistant cells and indicate that low-dose crizotinib monotherapy may be used in patients with specific P-gp-overexpressing chemoresistant cancer.
Collapse
Affiliation(s)
- Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Chunxue Jiang
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Ji Young Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Hae Ri Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| |
Collapse
|
29
|
Hernández-Rodríguez M, Mendoza Sánchez PI, Macías Perez ME, Cruz ER, Jiménez EM, Aceves-Hernández JM, Nicolás-Vázquez MI, Ruvalcaba RM. In vitro and computational studies of natural products related to perezone as anti-neoplastic agents. Biochimie 2020; 171-172:158-169. [DOI: 10.1016/j.biochi.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
|
30
|
Plumbagin Enhances the Anticancer Efficacy of Cisplatin by Increasing Intracellular ROS in Human Tongue Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5649174. [PMID: 32308804 PMCID: PMC7136784 DOI: 10.1155/2020/5649174] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin is widely used in the treatment of tongue squamous cell carcinoma (TSCC), but its clinical efficacy is limited by drug resistance and toxic side effects. Hence, a novel compound capable of enhancing the anticancer effect of cisplatin while reducing the side effects is urgently needed. We have previously shown that plumbagin (PLB), an anticancer phytochemical, is able to inhibit the growth of TSCC in vitro and in vivo. The objective of this study was to investigate the effect of PLB in reversing the resistance of TSCC to cisplatin as well as its molecular mechanisms. Here, we found that PLB enhances cisplatin-induced cytotoxicity, apoptosis, and autophagy in CAL27 and cisplatin-resistant CAL27/CDDP cells. PLB could inhibit the viability and growth of TSCC cells by increasing the production of intracellular reactive oxygen species (ROS). In addition, the combination treatment of PLB and cisplatin resulted in a synergistic inhibition of TSCC viability, apoptosis, and autophagy by increasing intracellular ROS, which may be achieved by activating JNK and inhibiting AKT/mTOR signaling pathways. Finally, the synergistic treatment was also demonstrated in vivo. Therefore, PLB combined with cisplatin is a potential therapeutic strategy against therapy TSCC cisplatin resistance.
Collapse
|
31
|
Huang YH, Lien Y, Chen JH, Lin ES, Huang CY. Identification and characterization of dihydropyrimidinase inhibited by plumbagin isolated from Nepenthes miranda extract. Biochimie 2020; 171-172:124-135. [PMID: 32147511 DOI: 10.1016/j.biochi.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Dihydropyrimidinase is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. This enzyme is important in pyrimidine metabolism, and blocking its activity would be detrimental to cell survival. This study investigated the dihydropyrimidinase inhibition by plumbagin isolated from the extract of carnivorous plant Nepenthes miranda (Nm). Plumbagin inhibited dihydropyrimidinase with IC50 value of 58 ± 3 μM. Double reciprocal results of Lineweaver-Burk plot indicated that this compound is a competitive inhibitor of dihydropyrimidinase. Fluorescence quenching analysis revealed that plumbagin could form a stable complex with dihydropyrimidinase with the Kd value of 37.7 ± 1.4 μM. Docking experiments revealed that the dynamic loop crucial for stabilization of the intermediate state in dihydropyrimidinase might be involved in the inhibition effect of plumbagin. Mutation at either Y155 or K156 within the dynamic loop of dihydropyrimidinase caused low plumbagin binding affinity. In addition to their dihydropyrimidinase inhibition, plumbagin and Nm extracts also exhibited cytotoxicity on melanoma cell survival, migration, and proliferation. Further research can directly focus on designing compounds that target the dynamic loop in dihydropyrimidinase during catalysis.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Yi Lien
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Jung-Hung Chen
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No.193, Sec.1, San-Min Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
32
|
Alem FZ, Bejaoui M, Villareal MO, Rhourri-Frih B, Isoda H. Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway. Exp Dermatol 2020; 29:427-435. [PMID: 32012353 DOI: 10.1111/exd.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
Melanoma is the most dangerous form of skin cancer with a very poor prognosis. Melanoma develops when unrepaired DNA damage causes to skin cells to multiply and form malignant tumors. The current therapy is limited by the highly ability of this disease to metastasize rapidly. Plumbagin is a naphthoquinone (5-hydroxy-2-methyl-1, 4-naphthoquinone), isolated from the roots of medicinal plant Plumbago zeylanica, and it is widely present in Lawsonia inermis L. It has been shown that plumbagin has an anti-proliferative and anti-invasive activities in various cancer cell lines; however, the anti-cancer and anti-metastatic effects of plumbagin are largely unknown against melanoma cells. In this study, we evaluated the effect of plumbagin on B16F10 murine melanoma cells . Plumbagin decreased B16F10 cell viability as well as the cell migration, adhesion, and invasion. The molecular mechanism was studied, and plumbagin downregulated genes relevant in MAPK pathway, matrix metalloproteinases (MMP's), and cell adhesion. Furthermore, plumbagin elevated the expression of apoptosis and tumors suppressor genes, and genes significant in reactive oxygen species (ROS) response. Taken together, our findings suggest that plumbagin has an anti-invasion and anti-metastasis effect on melanoma cancer cells by acting on MAPK pathway and its related genes.
Collapse
Affiliation(s)
- Fatima-Zahra Alem
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco.,Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, Bordeaux, France
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan
| | - Myra O Villareal
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Boutayna Rhourri-Frih
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,Chimie et Biologie des Membranes et Nanoobjets, University of Bordeaux, CNRS UMR 5248, Bordeaux, France
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba city, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
33
|
Li H, An X, Zhang D, Li Q, Zhang N, Yu H, Li Z. Transcriptomics Analysis of the Tumor-Inhibitory Pathways of 6-Thioguanine in MCF-7 Cells via Silencing DNMT1 Activity. Onco Targets Ther 2020; 13:1211-1223. [PMID: 32103989 PMCID: PMC7023860 DOI: 10.2147/ott.s236543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background 6-thioguanine (6-TG), as a conventional “ancient” drug for the treatment of acute leukemia, has been proved to have extensive anti-tumor roles. This study was created to investigate the hidden function of 6-TG on the MCF-7 breast cancer cell line (ER+, PR+) and its mechanisms. Methods MCF-7 cells were treated with 6-TG, and the IC50 value was measured by a cell counting kit-8 assay. Differentially expressed genes (DEGs) were confirmed by RNA-seq analysis. Apoptosis and cell cycle consequences were determined by flow cytometry and Western blot analyses. Results The results showed that colony formation decreased markedly and the percentage of cell apoptosis increased after 6-TG treatment. DNMT1 mRNA and protein expression decreased, and FAS expression increased. Moreover, 6-TG also induced MCF-7 cells to undergo G2/M phase cell cycle arrest and upregulated CDKN1A (p21). Conclusion Overall, our results suggest that 6-TG may induce FAS-mediated exogenous apoptosis and p21-dependent G2/M arrest by inhibiting the activity of DNMT1 in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, People's Republic of China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
34
|
Pradubyat N, Sakunrangsit N, Mutirangura A, Ketchart W. NADPH: Quinone oxidoreductase 1 (NQO1) mediated anti-cancer effects of plumbagin in endocrine resistant MCF7 breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 66:153133. [PMID: 31790893 DOI: 10.1016/j.phymed.2019.153133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND PLB is a natural naphthoquinone compound isolated from the roots of Plumbago indica plant. Our previous study reported the inhibitory effect of Plumbagin (PLB) on human endocrine resistant breast cancer cell growth and cell invasion. HYPOTHESIS/PURPOSE Since PLB is a naphthoquinone compound, it can be reduced by the cytosolic NADPH: quinone oxidoreductase 1 (NQO1) enzyme. NQO1 expression is upregulated in various types of aggressive cancer including breast cancer. This study investigated the impact of NQO1 on anti-cancer effects of PLB in endocrine-resistant breast cancer cells. STUDY DESIGN This study was an in vitro study using ER-positive cell line (MCF7) and endocrine-resistant cell lines (MCF7/LCC2 and MCF7/LCC9 cells). METHODS The roles of NQO1 in anti-cancer activity of PLB were investigated by using NQO1 knockdown cells, NQO1 inhibitor and NQO1 overexpressed cells. To study the impact of NQO1 on the effects of PLB on cell viability, apoptosis, invasion and generation of ROS, the following assays were used: MTT assays, annexin V-PE/7-ADD staining flow cytometry, matrigel invasion assays and DCFHDA assays. To study the mechanism of how NQO1 mediated PLB effects in tamoxifen response and apoptosis, we assessed the levels of mRNA expression by using qRT-PCR. RESULTS 1. In this study, NQO1 was upregulated in endocrine-resistant cells. 2. PLB did not change the expression of NQO1 but it was able to increase NQO1 activity. 3. The inhibitory effects of PLB on cell proliferation, cell invasion and expression of tamoxifen resistant gene were attenuated in NQO1 knockdown cells or in the presence of NQO1 inhibitor. 4. The effects of PLB to induce apoptosis and generate ROS were also decreased when NQO1 activity was inhibited or when the NQO1 expression was reduced. 5. The anti-cancer effects of PLB increased when NQO1 was upregulated. CONCLUSION The effects of PLB in endocrine-resistant breast cancer cells is dependent on NQO1's activity.
Collapse
Affiliation(s)
- Nalinee Pradubyat
- Overcoming cancer drug resistance research unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nithidol Sakunrangsit
- Overcoming cancer drug resistance research unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apiwat Mutirangura
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wannarasmi Ketchart
- Overcoming cancer drug resistance research unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
35
|
Andhale NB, Shahnawaz M, Ade AB. Fungal endophytes of Plumbago zeylanica L. enhances plumbagin content. BOTANICAL STUDIES 2019; 60:21. [PMID: 31494810 PMCID: PMC6732136 DOI: 10.1186/s40529-019-0270-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/22/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plumbagin is one of the pharmaceutically important biomolecule with anticancer potential. Among the plants reported to produce plumbagin, P. zeylanica topped the list. The plumbagin production is very slow with low yield and maximum 0.5% (of dry weight) was reported in P. zeylanica. To meet the increasing demand of the plumbagin at global level, the P. zeylanica are exploited at commercial level, which may pose serious threat on the germplasm of the plant populations. So, it is needed to enhance the contents of plumbagin in P. zeylanica using biotechnological approaches. Among the various methods used to enhance the contents of plumbagin in P. zeylanica, utilization of fungal endophytes to enhance the plumbagin contents is a widely accepted approach. As fungal endophytes have the potential to synthesize various secondary metabolites and also reported to influence the synthesis of the secondary metabolites in plants. In the present study, an attempt was made to assess the effect of fungal endophytes of the Plumbago zeylanica L. on enhancement of plumbagin contents at in vivo level. RESULTS Total 3 fungal endophytes were recorded from the roots of P. zeylanica collected from Khadki, Pune. The fungal endophytes were identified at morphological and molecular level. After 1 year of the treatment with fungal endophytes, significant enhancement of plumbagin was recorded in the roots of the P. zeylanica. Plumbagin contents in each were quantified against the standard plumbagin by employing LCMS-MS technique. Among the three fungal endophytes, the maximum enhancement of plumbagin content (122.67%) was reported with the treatment of Alternaria sp. (Isolate-3) in the roots of the P. zeylanica compared to control. CONCLUSION Among the three fungal endophytes, the maximum enhancement of plumbagin content (122.67%) was reported with Alternaria sp. (Isolate 3) in the roots of the pot-grown plants of P. zeylanica at in vivo level.
Collapse
Affiliation(s)
- Namdeo B Andhale
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India
- Department of Biology, Fergusson College, FC Road, Shivajinagar, Pune, MS, 411004, India
| | - Mohd Shahnawaz
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, Jammu, J&K, 180001, India.
| | - Avinash B Ade
- Department of Botany, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
36
|
Plumbagin-induced oxidative stress leads to inhibition of Na +/K +-ATPase (NKA) in canine cancer cells. Sci Rep 2019; 9:11471. [PMID: 31391478 PMCID: PMC6685937 DOI: 10.1038/s41598-019-47261-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
The Na+/K+-ATPase (NKA) complex is the master regulator of membrane potential and a target for anti-cancer therapies. Here, we investigate the effect of drug-induced oxidative stress on NKA activity. The natural product, plumbagin increases oxygen radicals through inhibition of oxidative phosphorylation. As a result, plumbagin treatment results in decreased production of ATP and a rapid increase in intracellular oxygen radicals. We show that plumbagin induces apoptosis in canine cancer cells via oxidative stress. We use this model to test the effect of oxidative stress on NKA activity. Using whole-cell patch-clamp electrophysiology we demonstrate that short-term exposure (4 min) to plumbagin results in 48% decrease in outward current at +50 mV. Even when exogenous ATP was supplied to the cells, plumbagin treatment resulted in 46% inhibition of outward current through NKA at +50 mV. In contrast, when the canine cancer cells were pre-treated with the oxygen radical scavenger, N-acetylcysteine, the NKA inhibitory activity of plumbagin was abrogated. These experiments demonstrate that the oxidative stress-causing agents such as plumbagin and its analogues, are a novel avenue to regulate NKA activity in tumors.
Collapse
|
37
|
Ethyl Acetate Extract of Nepenthes ventricosa x maxima Exerts Preferential Killing to Oral Cancer Cells. DNA Cell Biol 2019; 38:763-772. [DOI: 10.1089/dna.2018.4436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
38
|
Ou-Yang F, Tsai IH, Tang JY, Yen CY, Cheng YB, Farooqi AA, Chen SR, Yu SY, Kao JK, Chang HW. Antiproliferation for Breast Cancer Cells by Ethyl Acetate Extract of Nepenthes thorellii x ( ventricosa x maxima). Int J Mol Sci 2019; 20:ijms20133238. [PMID: 31266224 PMCID: PMC6651324 DOI: 10.3390/ijms20133238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Extracts from the Nepenthes plant have anti-microorganism and anti-inflammation effects. However, the anticancer effect of the Nepenthes plant is rarely reported, especially for breast cancer cells. Here, we evaluate the antitumor effects of the ethyl acetate extract of Nepenthesthorellii x (ventricosa x maxima) (EANT) against breast cancer cells. Cell viability and flow cytometric analyses were used to analyze apoptosis, oxidative stress, and DNA damage. EANT exhibits a higher antiproliferation ability to two breast cancer cell lines (MCF7 and SKBR3) as compared to normal breast cells (M10). A mechanistic study demonstrates that EANT induces apoptosis in breast cancer cells with evidence of subG1 accumulation and annexin V increment. EANT also induces glutathione (GSH) depletion, resulting in dramatic accumulations of reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX), as well as the depletion of mitochondrial membrane potential (MMP). These oxidative stresses attack DNA, respectively leading to DNA double strand breaks and oxidative DNA damage in γH2AX and 8-oxo-2′deoxyguanosine (8-oxodG) assays. Overall these findings clearly revealed that EANT induced changes were suppressed by the ROS inhibitor. In conclusion, our results have shown that the ROS-modulating natural product (EANT) has antiproliferation activity against breast cancer cells through apoptosis, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - I-Hsuan Tsai
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11050, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan
| | - Shu-Rong Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Kai Kao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Pediatric Department, Children's Hospital, Changhua Christian Hospital, Changhua 50006, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
39
|
Pan Q, Zhou R, Su M, Li R. The Effects of Plumbagin on Pancreatic Cancer: A Mechanistic Network Pharmacology Approach. Med Sci Monit 2019; 25:4648-4654. [PMID: 31230062 PMCID: PMC6604675 DOI: 10.12659/msm.917240] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND This study aimed to use a network pharmacology approach to establish the effects of plumbagin on pancreatic cancer (PC) and to predict core targets and biological functions, pathways, and mechanisms of action. MATERIAL AND METHODS Genes associated with the pathogenesis of PC were obtained from a database of gene-disease associations (DisGeNET). Putative genes associated with plumbagin were identified from the databases of drug target identification (PharmMapper), target prediction of bioactive components (SwissTargetPrediction), and comprehensive drug target information (DrugBank). PC targets of plumbagin were harvested by using a functional enrichment analysis tool (FunRich). The data of function-related protein-protein interactions (PPIs) with a confidence score >0.9 were obtained by using functional protein association networks (STRING). The network interactions of plumbagin and PC targets and function-related proteins were constructed through complex network analysis and visualization (Cytoscape). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were used to identify the effects of plumbagin. RESULTS The most important biotargets for plumbagin in PC were identified as TP53, MAPK1, BCL2, and IL6. A total of 1,731 annotations and 121 enriched pathways for plumbagin and PC were identified by KEGG and GO analysis. The top 10 signaling pathways of plumbagin and PC were screened, followed by identification of biological components and functions. CONCLUSIONS Network pharmacology established the effects of plumbagin on PC, predicted core targets, biological functions, pathways, and mechanisms of action. Further studies are needed to validate these predictive biotargets in PC.
Collapse
Affiliation(s)
- Qijin Pan
- Department of Oncology, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China (mainland)
| | - Rui Zhou
- Department of Hepatobiliary Surgery, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China (mainland)
| | - Min Su
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China (mainland)
| | - Rong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China (mainland)
| |
Collapse
|
40
|
Xu X, Xu Y, Zhang Q, Yang F, Yin Z, Wang L, Li Q. Porcine epidemic diarrhea virus infections induce apoptosis in Vero cells via a reactive oxygen species (ROS)/p53, but not p38 MAPK and SAPK/JNK signalling pathways. Vet Microbiol 2019; 232:1-12. [PMID: 31030832 PMCID: PMC7117205 DOI: 10.1016/j.vetmic.2019.03.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
p53 is activated, translocated to nucleus and involved in PEDV-induced apoptosis. ROS are accumulated during PEDV infection and involved in PEDV-induced apoptosis. ROS are the upper stream of p53 in PEDV infection. This is the first report that PEDV induce Vero cells apoptosis via ROS/p53 signal pathway.
Porcine epidemic diarrhea virus (PEDV) is a member of Coronavirus, which causes severe watery diarrhea in piglets with high morbidity and mortality. ROS and p53 play key roles in regulating many kinds of cell process during viral infection, however, the exact function in PEDV-induced apoptosis remains unclear. In this study, the pro-apoptotic effect of PEDV was examined in Vero cells and we observed that PEDV infection increased MDM2 and CBP, promoted p53 phosphorylation at serine 20 and, promoted p53 nuclear translocation, leading to p53 activation in Vero cells. Treatment with the p53 inhibitor PFT-α could significantly inhibit PEDV-induced apoptosis. We also observed PEDV infection induced time-dependent ROS accumulation. Treatment with antioxidants, such as pyrrolidine dithiocarbamate (PDTC) or N-acetylcysteine (NAC), significantly inhibited PEDV-induced apoptosis. Moreover, further inhibition tests were established to prove that p53 was regulated by ROS in PEDV-induced apoptosis. In addition, we also found that p38 MAPK and SAPK/JNK were activated in PEDV-infected Vero cells. However, treatment with the p38 MAPK inhibitor SB203580, and the SAPK/JNK inhibitor SP600125 reversed PEDV-induced apoptosis. Taken together, the results of this study demonstrate that activated p53 and accumulated ROS participated in PEDV-induced apoptosis and p53 could be regulated by ROS during PEDV infection. Activated p38 MAPK and SAPK/JNK exerted no influence on PEDV-induced apoptosis. These findings provide new insights into the function of p53 and ROS in the interaction of PEDV with Vero cells.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zheng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|