1
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Chang LC, Yeh EL, Chuang YC, Wu CH, Kuo CW, Lii CK, Yang YC, Chen HW, Li CC. Luteolin Inhibits Indoxyl Sulfate-Induced ICAM-1 and MCP-1 Expression by Inducing HO-1 Expression in EA.hy926 Human Endothelial Cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:5112-5123. [PMID: 39105397 DOI: 10.1002/tox.24380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In patients with chronic kidney disease, the uremic toxin indoxyl sulfate (IS) accelerates kidney damage and the progression of cardiovascular disease. IS may contribute to vascular diseases by inducing inflammation in endothelial cells. Luteolin has documented antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of luteolin on IS-mediated reactive oxygen species (ROS) production and intercellular adhesion molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) expression in EA.hy926 cells and the possible mechanisms involved. IS significantly induced ROS production (by 6.03-fold, p < 0.05), ICAM-1 (by 2.19-fold, p < 0.05) and MCP-1 protein expression (by 2.18-fold, p < 0.05), and HL-60 cell adhesion (by 31%, p < 0.05), whereas, luteolin significantly decreased IS-induced ROS production, ICAM-1 and MCP-1 protein expression, and HL-60 cell adhesion. Moreover, luteolin attenuated IS-induced nuclear accumulation of p65 and c-jun. Luteolin dose-dependently increased heme oxygenase-1 (HO-1) expression and the maximum fold induction of HO-1 by luteolin was 3.68-fold (p < 0.05), whereas, HO-1 knockdown abolished the suppression of ICAM-1 and MCP-1 expression by luteolin. Luteolin may protect against IS-induced vessel damage by inducing HO-1 expression in vascular endothelial cells, which suppresses nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) mediated ICAM-1 and MCP-1 expression.
Collapse
Affiliation(s)
- Li-Chien Chang
- Division of Nephrology, Department of Internal Medicine, Armed Forces Taichung General Hospital, Taichung, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - En-Ling Yeh
- Department of Nutrition, College of Medical and Health Care, Hung-Kuang University, Taichung, Taiwan
| | - Ya-Chi Chuang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hsuan Wu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Wen Kuo
- Division of Nephrology, Department of Internal Medicine, Armed Forces Taichung General Hospital, Taichung, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
3
|
Liu X, Zang L, Yu J, Yu J, Wang S, Zhou L, Song H, Ma Y, Niu X, Li W. Anti-inflammatory effect of proanthocyanidins from blueberry through NF-κβ/NLRP3 signaling pathway in vivo and in vitro. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 38772618 DOI: 10.1080/08923973.2024.2358770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Systemic inflammatory response syndrome (SIRS) is an uncontrolled systemic inflammatory response. Proanthocyanidins (PC) is a general term of polyphenol compounds widely existed in blueberry fruits and can treat inflammation-related diseases. This study aimed to explore the regulatory effect of PC on lipopolysaccharide (LPS)-induced systemic inflammation and its potential mechanism, providing effective strategies for the further development of PC. METHODS Here, RAW264.7 macrophages were stimulated with LPS to establish an inflammation model in vitro, while endotoxin shock mouse models were constructed by LPS in vivo. The function of PC was investigated by MTT, ELISA kits, H&E staining, immunohistochemistry, and Western blot analysis. RESULTS Functionally, PC could demonstrate the potential to mitigate mortality in mice with endotoxin shock, as well as attenuated the levels of inflammatory cytokines (IL-6, TNF-α) and biochemical indicators (AST, ALT, CRE and BUN). Moreover, it had a significant protective effect on lung and kidney tissues damage. Mechanistically, PC exerted anti-inflammatory effects by inhibiting the activation of the NF-κB/NLRP3 signaling pathway. CONCLUSION PC might have the potential ability of anti-inflammatory effects via modulation of the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
4
|
Su X, Lai L, Li X, Li W, Mo Z, Li Y, Xiao L, Wang W, Wang F. DMC (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone) enhances exercise tolerance via the AMPK-SIRT1-PGC-1α pathway in mice fed a high-fat diet. Phytother Res 2023; 37:4488-4503. [PMID: 37314083 DOI: 10.1002/ptr.7914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Obesity is caused by an imbalance between energy intake and energy expenditure. This study aimed to determine the effects and mechanisms of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) on exercise tolerance in high-fat diet (HFD)-fed mice. Male C57BL/6J mice were randomly divided into two categories (7 groups [n = 8]): sedentary (control [CON], HFD, 200 mg/kg DMC, and 500 mg/kg DMC) and swimming (HFD, 200 mg/kg DMC, and 500 mg/kg DMC). Except the CON group, all other groups were fed HFD with or without DMC intervention for 33 days. The swimming groups were subjected to exhaustive swimming (three sessions/week). Changes in swimming time, glucolipid metabolism, body composition, biochemical indicators, histopathology, inflammation, metabolic mediators, and protein expression were assessed. DMC combined with regular exercise improved endurance performance, body composition, glucose and insulin tolerance, lipid profile, and the inflammatory state in a dose-dependent manner. Further, DMC alone or combined with exercise could restore normal tissue morphology, reduce fatigue-associated markers, and boost whole-body metabolism and the protein expression of phospho-AMP-activated protein kinase alpha/total-AMP-activated protein kinase alpha (AMPK), sirtuin-1 (SIRT1), peroxisome-proliferator-activated receptor gamma coactivator 1alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha in the muscle and adipose tissues of HFD-fed mice. DMC exhibits antifatigue effects by regulating glucolipid catabolism, inflammation, and energy homeostasis. Furthermore, DMC exerts a synergistic exercise-related metabolic effect via the AMPK-SIRT1-PGC-1α signaling pathway, suggesting that DMC is a potential natural sports supplement with mimicked or augmented exercise effects for obesity prevention.
Collapse
Affiliation(s)
- Xiaotong Su
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Linglin Lai
- Department of Drug Clinical Trials, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xu Li
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Wenna Li
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
- Key Laboratory of Basic Pharmacology of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhentao Mo
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yiqi Li
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Lu Xiao
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Wenjun Wang
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Feng Wang
- Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
5
|
Zhang W, Chen H, Xu Z, Zhang X, Tan X, He N, Shen J, Dong J. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury. Int Immunopharmacol 2023; 122:110563. [PMID: 37392573 DOI: 10.1016/j.intimp.2023.110563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Liensinine is mainly derived from alkaloids extracted and isolated from lotus seeds (Nelumbo nucifera Gaertn). It possesses anti-inflammatory, and antioxidant, according to contemporary pharmacological investigations. However, the effects and therapeutic mechanisms of liensinine on acute kidney injury (AKI) models of sepsis are unclear. To gain insight into these mechanisms, we established a sepsis kidney injury model by LPS injection of mice treated with liensinine, and stimulation of HK-2 with LPS in vitro and treated with liensinine and inhibitors of p38 MAPK, JNK MAPK. We first found that liensinine significantly reduced kidney injury in sepsis mice, while suppressing excessive inflammatory responses, restoring renal oxidative stress-related biomarkers, reducing increased apoptosis in TUNEL-positive cells and excessive autophagy, and that this process was accompanied by an increase in JNK/ p38-ATF 2 axis. In vitro experiments further demonstrated that lensinine reduced the expression of KIM-1, NGAL, inhibited pro- and anti-inflammatory secretion disorders, regulated the activation of the JNK/p38-ATF 2 axis, and reduced the accumulation of ROS, as well as the reduction of apoptotic cells detected by flow cytometry, and that this process played the same role as that of p38 MAPK, JNK MAPK inhibitors. We speculate that liensinine and p38 MAPK, JNK MAPK inhibitors may act on the same targets and could be involved in the mechanism of alleviating sepsis kidney injury in part through modulation of the JNK/p38-ATF 2 axis. Our study demonstrates that lensinine is a potential drug and thus provides a potential avenue for the treatment of AKI.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Zhaoyun Xu
- Blood Transfusion Department, Ganyu District People's Hospital of Lianyungang City, Lianyungang 222100, China
| | - Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuelian Tan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jinyang Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
6
|
Zhang Y, Ma J, Liu S, Chen C, Li Q, Qin M, Ren L. Ginsenoside F1 attenuates pirarubicin-induced cardiotoxicity by modulating Nrf2 and AKT/Bcl-2 signaling pathways. J Ginseng Res 2023; 47:106-116. [PMID: 36644383 PMCID: PMC9834006 DOI: 10.1016/j.jgr.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Pirarubicin (THP) is an anthracycline antibiotic used to treat various malignancies in humans. The clinical usefulness of THP is unfortunately limited by its dose-related cardiotoxicity. Ginsenoside F1 (GF1) is a metabolite formed when the ginsenosides Re and Rg1 are hydrolyzed. However, the protective effects and underlying mechanisms of GF1 on THP-induced cardiotoxicity remain unclear. Methods We investigated the anti-apoptotic and anti-oxidative stress effects of GF1 on an in vitro model, using H9c2 cells stimulated by THP, plus trigonelline or AKT inhibitor imidazoquinoxaline (IMQ), as well as an in vivo model using THP-induced cardiotoxicity in rats. Using an enzyme-linked immunosorbent test, the levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (c-TnT), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) were determined. Nuclear factor (erythroid-derived2)-like 2 (Nrf2) and the expression of Nrf2 target genes, including heme oxygenase-1 (HO-1), glutathione-S-transferase (Gst), glutamate-cysteine ligase modifier subunit (GCLM), and expression levels of AKT/Bcl-2 signaling pathway proteins were detected using Western blot analysis. Results THP-induced myocardial histopathological damage, electrocardiogram (ECG) abnormalities, and cardiac dysfunction were reduced in vivo by GF1. GF1 also decreased MDA, BNP, CK-MB, c-TnT, and LDH levels in the serum, while raising SOD and GSH levels. GF1 boosted Nrf2 nuclear translocation and Nrf2 target gene expression, including HO-1, Gst, and GCLM. Furthermore, GF1 regulated apoptosis by activating AKT/Bcl-2 signaling pathways. Employing Nrf2 inhibitor trigonelline and AKT inhibitor IMQ revealed that GF1 lacked antioxidant and anti-apoptotic effects. Conclusion In conclusion, GF1 was found to alleviate THP-induced cardiotoxicity via modulating Nrf2 and AKT/Bcl-2 signaling pathways, ultimately alleviating myocardial oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China,Department of Rehabilitation Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Shan Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Qi Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Jilin, China,Corresponding author. Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, China.
| |
Collapse
|
7
|
Qiu W, Zhang X, Pang X, Huang J, Zhou S, Wang R, Tang Z, Su R. Asiatic acid alleviates LPS-induced acute kidney injury in broilers by inhibiting oxidative stress and ferroptosis via activation of the Nrf2 pathway. Food Chem Toxicol 2022; 170:113468. [DOI: 10.1016/j.fct.2022.113468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
8
|
Niu X, Song H, Xiao X, Yu J, Yu J, Yang Y, Huang Q, Zang L, Han T, Zhang D, Li W. Tectoridin alleviates lipopolysaccharide -induced inflammaion via inhibiting TLR4-NF-κB/NLRP3 signaling in vivo and in vitro. Immunopharmacol Immunotoxicol 2022; 44:641-655. [PMID: 35506641 DOI: 10.1080/08923973.2022.2073890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUD Tectoridin, widely extracted and separated from the rhizome of Iris tectorum Maxium, is extensively reported to have affluent bioactivity, but rarely reported to have anti-inflammatory effects. In this study, we aim to investigate the anti-inflammatory effects and the underlying mechanisms of tectoridin. METHODS Here, RAW264.7 macrophages were stimulated with Lipopolysaccharide (LPS) for the inflammation model in vitro. Experimental animals received tectoridin and Dexamethasone (DEX) before LPS injection for endotoxic shock mouse model in vivo. The pro-inflammatory mediators and cytokines in the cell supernatant and serum were detected by ELISA kits. The tissue damages were assessed by biochemical indexes and H&E staining. Immunohistochemistry and Western blot were performed for the detection of proteins. RESULTS Our data showed that tectoridin attenuated the LPS-up-regulated nitric oxide (NO), interleukin-6, (IL-6) and interleukin-18, (IL-18) from macrophages and tumor necrosis factor-α, (TNF-α); (IL-6) and (IL-1β) in the serum levels. Besides, our histopathological study showed that the damages caused by LPS in the lung, liver and kidney tissues were decreased. Furthermore, our results demonstrated that tectoridin inhibited the activation of TLR4-NF-κB/NLRP3 signaling proved by immunohistochemistry assay and Western blot. CONCLUSION Taken all together, tectoridin might have the potential ability of anti-inflammatory effects and the possible mechanism may be relevant to its inhibition of TLR4-NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, Shaanxi, China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, Shaanxi, China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Shen D, Wu C, Fan G, Li T, Dou J, Zhu J, Li C, Kou X. Jujube peel polyphenols synergistically inhibit lipopolysaccharide-induced inflammation through multiple signaling pathways in RAW 264.7 cells. Food Chem Toxicol 2022; 164:113062. [PMID: 35460827 DOI: 10.1016/j.fct.2022.113062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022]
Abstract
Jujube has great potential as food and traditional drugs in several countries. To study the anti-inflammatory influence of jujube peel polyphenols in lipopolysaccharide (LPS) induced RAW 264.7 cells through mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB) and nuclear erythroid 2-related factor 2 (Nrf2) signaling pathways. In this study, the phenolic composition of polyphenols in jujube peel was analyzed using LC-MS/MS, and which was confirmed that the main polyphenols were p-coumaric acid, catechin and rutin. Meanwhile, jujube peel polyphenols attenuated the generation of TNF-α, IL-1β, IL-6, NO and PGE2 by inhibiting MAPK and NF-κB signaling pathways. Additionally, jujube peel polyphenol activate Nrf2 from the cytoplasm to the nucleus, regulate antioxidant enzymes and pro-inflammatory cytokines, and reduce oxidative stress and inflammatory responses. Results obtained from this study suggest that jujube peel polyphenols may alleviate oxidative stress and inflammation by inhibiting MAPK and NF-κB and activating Nrf2 signaling pathways. Furthermore, jujube peel polyphenols have a synergistic effect in the treatment of LPS-induced inflammatory in RAW 264.7 cells. In conclusion, this study not only reveals the mechanism by which jujube peel polyphenols inhibit LPS-induced inflammation in RAW 264.7 cells, but also provides guidance for the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Dongbei Shen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinfeng Dou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiuying Kou
- Infinitus (China) Company Ltd. Guangzhou, Guangdong, 510663, PR China
| |
Collapse
|
10
|
Bailly C, Vergoten G. Mechanistic insights into dimethyl cardamonin-mediated pharmacological effects: A double control of the AMPK-HMGB1 signaling axis. Life Sci 2020; 263:118601. [PMID: 33086122 PMCID: PMC7568849 DOI: 10.1016/j.lfs.2020.118601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022]
Abstract
Dimethyl cardamonin (DMC) has been isolated from diverse plants, notably from Cleistocalyx operculatus. We have reviewed the pharmacological properties of this natural product which displays anti-inflammatory, anti-hyperglycemic and anti-cancer properties. The pharmacological activities essentially derive from the capacity of DMC to interact with the protein targets HMGB1 and AMPK. Upon binding to HMGB1, DMC inhibits the nucleocytoplasmic transfer of the protein and its extracellular secretion, thereby blocking its alarmin function. DMC also binds to the AMP site of AMPK to activate phospho-AMPK and then to trigger downstream signals leading to the anti-inflammatory and anti-hyperglycemic effects. AMPK activation by DMC reinforces inhibition of HMGB1, to further reduce the release of the alarmin protein, likely contributing to the anticancer effects. The characterization of a tight control of DMC over the AMPK-HMGB1 axis not only helps to explain the known activities of DMC but also suggests opportunities to use this chalcone to treat other pathological conditions such as the acute respiratory distress syndrome (which affects patients with COVID-19). DMC structural analogues are also evoked.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
11
|
Lee H, Park RY, Park K. Total Syntheses of 4′,6′‐Dimethoxy‐2'‐Hydroxy‐3′,5′‐Dimethylchalcone Derivatives. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hana Lee
- School of Chemical Engineering and Material Science Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Rae Yeon Park
- School of Chemical Engineering and Material Science Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| | - Kwangyong Park
- School of Chemical Engineering and Material Science Chung‐Ang University 84 Heukseok‐ro, Dongjak‐gu, Seoul 06974 Republic of Korea
| |
Collapse
|
12
|
Ethnopharmacology, Phytochemistry, and Pharmacology of Syzygium nervosum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8263670. [PMID: 33204293 PMCID: PMC7652606 DOI: 10.1155/2020/8263670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
Syzygium nervosum, which belongs to the Myrtaceae plant family, is widely distributed and cultivated in South East Asian countries. The decoction of S. nervosum leaves and flower buds has been consumed regularly as a beverage among the Vietnamese and Chinese communities. In addition, it has also been used in traditional medicine for a variety of purposes, notably for influenza, skin diseases, and digestive conditions. To date, there has been a considerable number of publications on chemical profiling and pharmacological activities of S. nervosum crude extract and pure isolated compounds. Our analysis indicated the characteristic chemical scaffolds and potential bioactivities on cancer, diabetes, and inflammatory diseases of this plant. The review aims to summarize up-to-date past study results and suggest future research direction on this species, in order to promote clinical applications of S. nervosum.
Collapse
|
13
|
Zhao XL, Yu L, Zhang SD, Ping K, Ni HY, Qin XY, Zhao CJ, Wang W, Efferth T, Fu YJ. Cryptochlorogenic acid attenuates LPS-induced inflammatory response and oxidative stress via upregulation of the Nrf2/HO-1 signaling pathway in RAW 264.7 macrophages. Int Immunopharmacol 2020; 83:106436. [PMID: 32234671 DOI: 10.1016/j.intimp.2020.106436] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Phenolic acids are found in natural plants, such as caffeic acid, rosmarinic acid, and chlorogenic acid. They have long been used as pharmacological actives, owing to their anti-inflammatory and antioxidant activities. Cryptochlorogenic acid (CCGA) is a special isomer of chlorogenic acid; the pharmacological effects and related molecular mechanisms of CCGA have been poorly reported. In the present study, the antioxidant and anti-inflammatory effects of CCGA in RAW 264.7 macrophages and the underlying mechanisms were investigated. The results revealed that CCGA dose-dependently inhibited LPS-induced production of NO, TNF-α, and IL-6 and blocked iNOS, COX-2, TNF-α, and IL-6 expressions. CCGA also significantly increased the GSH/GSSG ratio and SOD activity and reduced the MDA level. Moreover, CCGA suppressed the nuclear translocation of NF-κB by hindering the phosphorylation of IκB kinase (IKK) and degrading IκB. It also downregulated the phosphorylation of MAPKs. Our results indicated that CCGA significantly inhibited NF-κB activation by controlling the expression of pro-inflammatory factors and promoting the nuclear transfer of Nrf2. In conclusion, CCGA could attenuate LPS-induced inflammatory symptoms by modulating NF-κB/MAPK signaling cascades and inhibit LPS-induced oxidative stress via Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Xue-Lian Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Liang Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sun-Dong Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Kou Ping
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hai-Yan Ni
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xiang-Yu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chun-Jian Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Yu-Jie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Forestry, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|