1
|
Petrović L, Skorić M, Šiler B, Banjanac T, Gašić U, Matekalo D, Lukić T, Nestorović Živković J, Dmitrović S, Aničić N, Milutinović M, Božunović J, Filipović B, Todorović M, Mišić D. Patterns of Genetic Variation of Nepeta nuda L. from the Central Balkans: Understanding Drivers of Chemical Diversity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1483. [PMID: 38891292 PMCID: PMC11174911 DOI: 10.3390/plants13111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Nepeta nuda L., a notable medicinal species in the tradition of the Balkan region, is a rich source of bioactive iridoids and phenolics previously described as high-resolution taxonomical classifiers for the genus Nepeta. However, their potential in investigating intra-species differentiation is here described for the first time. The aim was to recognize the sources of natural chemical diversity and their association with the genetic variability both within and among N. nuda populations in the Central Balkans. Chemical diversity was assessed from methanol extracts and essential oils through untargeted and targeted metabolomics using state-of-the-art analytical tools, covering a broad spectrum of compounds that represent the N. nuda metabolome. We found that chemodiversity primarily resides within populations of N. nuda, and similar results were obtained at the DNA level using microsatellite markers. The low genetic and chemical differentiation of the studied N. nuda populations implies that their metabolomic profiles may be less influenced by geographic distance and variable environmental conditions within the Central Balkans, as they are under the pivotal control of their genetic backgrounds. Screening the distribution of the major bioactive compounds belonging to phenolics (phenolic acids and flavonoids) and iridoids (both aglycones and glycosylated forms), within and among N. nuda populations, is able to guarantee mass spectrometry-based tools for the selection of elite representative genotypes with practical importance. The knowledge acquired will allow us to delve deeper into the molecular background of N. nuda chemical diversity, which is the course of our further work.
Collapse
Affiliation(s)
| | - Marijana Skorić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (L.P.); (T.B.); (U.G.); (D.M.); (T.L.); (J.N.Ž.); (S.D.); (N.A.); (M.M.); (J.B.); (B.F.); (M.T.)
| | - Branislav Šiler
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (L.P.); (T.B.); (U.G.); (D.M.); (T.L.); (J.N.Ž.); (S.D.); (N.A.); (M.M.); (J.B.); (B.F.); (M.T.)
| | | | | | | | | | | | | | | | | | | | | | | | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia; (L.P.); (T.B.); (U.G.); (D.M.); (T.L.); (J.N.Ž.); (S.D.); (N.A.); (M.M.); (J.B.); (B.F.); (M.T.)
| |
Collapse
|
2
|
Mollova S, Dzhurmanski A, Fidan H, Bojilov D, Manolov S, Dincheva I, Stankov S, Stoyanova A, Ercisli S, Assouguem A, Marc RA, Ullah R, Bari A. Chemical Composition of Essential Oils from Nepeta transcaucasica Grossh. and Nepeta cataria L. Cultivated in Bulgaria and Their Antimicrobial and Antioxidant Activity. ACS OMEGA 2023; 8:15441-15449. [PMID: 37151483 PMCID: PMC10157675 DOI: 10.1021/acsomega.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
The genus Nepeta, belonging to the family Lamiaceae, includes about 300 species, most of which are used in folk medicine due to their pronounced biological properties. The aim of the present study was to evaluate the agrobiological characteristics of Nepeta transcaucasica (N. transcaucasica) Grossh. and Nepeta cataria (N. cataria) L., cultivated in Bulgaria, and obtain their essential oils and determine their antimicrobial and antioxidant activities. The agrobiological characteristics of the two species growing in Kazanlak were analyzed; therefore, high variability in the population of N. transcaucasica and comparative homogeneity in N. cataria was shown. The species N. transcaucasica contained 0.28% essential oil with main components β-citronellol (52.05%), eucalyptol (7.34%), β-citronellal (6.06%), germacrene D (5.45%), (Z)-β-ocimene (5.14%), and β-caryophyllene (3.06%). The species N. cataria consisted of 0.19% essential oil with main components β-citronellol (26.31%), geraniol (15.92%), neral (11.45%), nerol (9.56%), carvacrol (6.04%), and β-citronellal (5.35%). The antibacterial activity against Gram-positive bacteria Listeria monocytogenes and Staphylococcus aureus and Gram-negative bacteria Escherichia coli (E. coli) and Salmonella enterica subsp. enterica serovar Abony was determined. The essential oils showed antimicrobial activity only against E. coli. The diameters of the inhibition zones were found to be 26 mm for the species N. transcaucasica and 10 mm for the species N. cataria. The antioxidant activity of the two essential oils was also determined by four different methods, DPPH, ABTS, FRAP, and CUPRAC, with the highest values for the ABTS radical, for the species N. transcaucasica (48.72 μM TE/mL), and the species N. cataria (310 μM TE/mL).
Collapse
Affiliation(s)
- Silviya Mollova
- Institute
of Roses, Essential and Medical Plants, Agricultural Academy, Kazanlak 6100, Bulgaria
| | - Anatoli Dzhurmanski
- Institute
of Roses, Essential and Medical Plants, Agricultural Academy, Kazanlak 6100, Bulgaria
| | - Hafize Fidan
- University
of Food Technologies, Plovdiv 4000, Bulgaria
| | - Dimitar Bojilov
- Paisii
Hilendarski University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Stanimir Manolov
- Paisii
Hilendarski University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Ivayla Dincheva
- Plant
Genetic Research Group, AgroBioInstitute, Agricultural Academy, Sofia 1000, Bulgaria
| | | | | | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Türkiye
- HGF
Agro, Ata Teknokent, TR-25240 Erzurum, Türkiye
| | - Amine Assouguem
- Laboratory
of Functional Ecology and Environment, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, P.O. Box 2202, Fez 2202, Morocco
| | - Romina Alina Marc
- Food
Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary
Medicine, 400372 Cluj-Napoca, Romania
- Technological
Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No.
64, 400509 Cluj-Napoca, Romania
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh, Riyadh Province 11451, Saudi Arabia
| | - Ahmed Bari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Riyadh Province 11451, Saudi Arabia
| |
Collapse
|
3
|
Lungoci C, Rîmbu CM, Motrescu I, Serbezeanu D, Horhogea CE, Vlad-Bubulac T, Ghițău CS, Puiu I, Neculai-Văleanu AS, Robu T. Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded with Nepeta racemosa Lam. Essential Oil and Perspectives for Possible Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:898. [PMID: 36840247 PMCID: PMC9963579 DOI: 10.3390/plants12040898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Essential oil of Nepeta racemosa Lam. was extracted and characterized to determine its antimicrobial activity and potential use in applications. The essential oil was loaded on polyvinyl alcohol-pullulan films and gels and characterized by optical microscopy, scanning electron microscopy, and UV-Vis spectroscopy before having its antimicrobial capacities assessed. The essential oil extracted from Nepeta racemosa Lam. was characterized using gas chromatography coupled with mass spectroscopy, which indicated that the most abundant component was nepetalic acid (55.5%), followed by eucalyptol (10.7%) and other compounds with concentrations of about 5% or less. The essential oil, as well as the loaded films and gels, exhibited good antibacterial activity on both gram-positive and gram-negative strains, with growth inhibition zones larger in some cases than for gentamicin, indicating excellent premises for using these essential-oil-loaded materials for applications in the food industry or biomedicine.
Collapse
Affiliation(s)
- Constantin Lungoci
- Department of Plant Science, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
| | - Iuliana Motrescu
- Department of Exact Sciences, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
- Research Institute for Agriculture and Environment, Iasi University of Life Sciences, 9 Sadoveanu Alley, 700490 Iasi, Romania
| | - Diana Serbezeanu
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Cristina Elena Horhogea
- Department of Public Health, Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
| | - Tăchiță Vlad-Bubulac
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Carmen Simona Ghițău
- Department of Plant Science, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Ioan Puiu
- Department of Plant Science, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | | | - Teodor Robu
- Department of Plant Science, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
4
|
Nadeem A, Shahzad H, Ahmed B, Muntean T, Waseem M, Tabassum A. Phytochemical profiling of antimicrobial and potential antioxidant plant: Nepeta cataria. FRONTIERS IN PLANT SCIENCE 2022; 13:969316. [PMID: 36226301 PMCID: PMC9549696 DOI: 10.3389/fpls.2022.969316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 05/24/2023]
Abstract
Traditional and phytochemical studies have confirmed the richness and diversity of medicinal plants such as Nepeta cataria (N. cataria), but more studies are needed to complete its metabolite profiling. The objective of this research was to enhance the metabolomic picture and bioactivity of N. cataria for better evaluation. Phytochemical analysis was performed by bio-guided protocols and gas chromatography-mass spectrometry (GC/MS). For this, solvents such as methanol, ethanol, water, acetone, and hexane were used to extract a wide number of chemicals. Antibacterial analysis was performed using the 96-well plate test, Kirby Bauer's disk diffusion method, and the resazurin microdilution test. Antioxidant activity was determined by the DPPH assay and radical scavenging capacity was evaluated by the oxygen radical absorbance capacity (ORAC) assay. GC/MS analysis revealed a total of 247 identified and 127 novel metabolites from all extracts of N. cataria. Water and acetone extracts had the highest identified metabolites (n = 79), whereas methanol extract was the highest in unidentified metabolites (n = 48). The most abundant phytochemicals in methanol extract were 1-isopropylcyclohex-1-ene (concentration = 27.376) and bicyclo [2.2.1] heptan-2-one (concentration = 20.437), whereas in ethanol extract, it was 9,12,15-octadecatrienoic acid (concentration = 27.308) and 1-isopropylcyclohex-1-ene (concentration = 25.854). An abundance of 2 methyl indoles, conhydrin, and coumarin was found in water extracts; a good concentration of eucalyptol was found in acetone extract; and 7,9-di-tert-butyl-1-oxaspiro is the most abundant phytochemicals in hexane extracts. The highest concentration of flavonoids and phenols were identified in hexane and methanol extracts, respectively. The highest antioxidant potential (DPPH assay) was observed in acetone extract. The ethanolic extract exhibited a two-fold higher ORAC than the methanol extract. This examination demonstrated the inhibitory effect against a set of microbes and the presence of polar and non-polar constituents of N. cataria. The results of this study provide a safe resource for the development of food, agriculture, pharmaceutical, and other industrial products upon further research validation.
Collapse
Affiliation(s)
- Ali Nadeem
- Plant Pathology Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- Department of Plant Biology, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Hira Shahzad
- International Centre for Public Health (ICPH), New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Clinical Epigenetics Lab, University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Bashir Ahmed
- Plant Pathology Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Tudor Muntean
- Department of Plant Biology, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Maaz Waseem
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Tabassum
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| |
Collapse
|
5
|
Petrova D, Gašić U, Yocheva L, Hinkov A, Yordanova Z, Chaneva G, Mantovska D, Paunov M, Ivanova L, Rogova M, Shishkova K, Todorov D, Tosheva A, Kapchina-Toteva V, Vassileva V, Atanassov A, Mišić D, Bonchev G, Zhiponova M. Catmint ( Nepeta nuda L.) Phylogenetics and Metabolic Responses in Variable Growth Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:866777. [PMID: 35651766 PMCID: PMC9150856 DOI: 10.3389/fpls.2022.866777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Nepeta nuda (catmint; Lamiaceae) is a perennial medicinal plant with a wide geographic distribution in Europe and Asia. This study first characterized the taxonomic position of N. nuda using DNA barcoding technology. Since medicinal plants are rich in secondary metabolites contributing to their adaptive immune response, we explored the N. nuda metabolic adjustment operating under variable environments. Through comparative analysis of wild-grown and in vitro cultivated plants, we assessed the change in phenolic and iridoid compounds, and the associated immune activities. The wild-grown plants from different Bulgarian locations contained variable amounts of phenolic compounds manifested by a general increase in flowers, as compared to leaves, while a strong reduction was observed in the in vitro plants. A similar trend was noted for the antioxidant and anti-herpesvirus activity of the extracts. The antimicrobial potential, however, was very similar, regardless the growth conditions. Analysis of the N. nuda extracts led to identification of 63 compounds including phenolic acids and derivatives, flavonoids, and iridoids. Quantification of the content of 21 target compounds indicated their general reduction in the extracts from in vitro plants, and only the ferulic acid (FA) was specifically increased. Cultivation of in vitro plants under different light quality and intensity indicated that these variable light conditions altered the content of bioactive compounds, such as aesculin, FA, rosmarinic acid, cirsimaritin, naringenin, rutin, isoquercetin, epideoxyloganic acid, chlorogenic acid. Thus, this study generated novel information on the regulation of N. nuda productivity using light and other cultivation conditions, which could be exploited for biotechnological purposes.
Collapse
Affiliation(s)
- Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Lyubomira Yocheva
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Anton Hinkov
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Lyubomira Ivanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Mariya Rogova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Daniel Todorov
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Anita Tosheva
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Veneta Kapchina-Toteva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Georgi Bonchev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
6
|
Hogenbom J, Istanbouli M, Faraone N. Novel β-Cyclodextrin and Catnip Essential Oil Inclusion Complex and Its Tick Repellent Properties. Molecules 2021; 26:molecules26237391. [PMID: 34885973 PMCID: PMC8659168 DOI: 10.3390/molecules26237391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Cyclodextrin inclusion complexes have been successfully used to encapsulate essential oils, improving their physicochemical properties and pharmacological effects. Besides being well-known for its effects on cats and other felines, catnip (Nepeta cataria) essential oil demonstrates repellency against blood-feeding pests such as mosquitoes. This study evaluates the tick repellency of catnip oil alone and encapsulated in β-cyclodextrin, prepared using the co-precipitation method at a 1:1 molar ratio. The physicochemical properties of this inclusion complex were characterized using GC-FID for encapsulation efficiency and yield and SPME/GC-MS for volatile emission. Qualitative assessment of complex formation was done by UV-Vis, FT-IR, 1H NMR, and SEM analyses. Catnip oil at 5% (v/v) demonstrated significant tick repellency over time, being comparable to DEET as used in commercial products. The prepared [catnip: β-CD] inclusion complex exerted significant tick repellency at lower concentration of the essential oil (equivalent of 1% v/v). The inclusion complex showed that the release of the active ingredient was consistent after 6 h, which could improve the effective repellent duration. These results demonstrated the effective tick repellent activity of catnip essential oil and the successful synthesis of the inclusion complex, suggesting that β-CDs are promising carriers to improve catnip oil properties and to expand its use in repellent formulations for tick management.
Collapse
|
7
|
Wu Y, Li L, Yuan W, Hu J, Lv Z. Application of GC × GC coupled with TOF–MS for the trace analysis of chemical components and exploration the characteristic aroma profile of essential oils obtained from two tree peony species (Paeonia rockii and Paeonia ostii). Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Amirmohammadi FZ, Azizi M, Nemati SH, Iriti M, Vitalini S. Analysis of the essential oil composition of three cultivated Nepeta species from Iran. ACTA ACUST UNITED AC 2021; 75:247-254. [PMID: 32092043 DOI: 10.1515/znc-2019-0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022]
Abstract
Essential oils (EOs) of three Iranian cultivated Nepeta species were investigated. The oils were obtained by hydrodistillation of air-dried plant materials at full flowering stage and analyzed by gas chromatography (GC) and gas chromatography coupled to mass spectroscopy (GC/MS). In total, 89 compounds were detected. In over 2 years, a number of constituents were identified in the EO of Nepeta binaloudensis first and second years (26 and 37, respectively), Nepeta cataria (25 and 32, respectively), and Nepeta assurgens (45 and 50, respectively). In the oils of N. binaloudensis, 4a-α,7-α,7a-α-nepetalactone (NL) 59.7% and 1,8-cineole (19.6%) during the first and second years, respectively, were the main constituents. The main components of N. cataria were 4a-α,7-α,7a-β-NL (72.8%) and 4a-α,7-β,7a-α-NL (73.9%) during the first and second years, respectively, and 4a-α,7-α,7a-α-NL (55.5%) and 1,8-cineole (24.1%) during the first and second years, respectively, were the main constituents of N. assurgens. The results showed that NLs isomers and 1,8-cineole were the main components of the oils of three cultivated Nepeta species.
Collapse
Affiliation(s)
- Fatemeh Zahra Amirmohammadi
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Majid Azizi
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Seyyed Hossein Nemati
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milano, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milano, Italy
| |
Collapse
|
9
|
Shanaida M, Hudz N, Jasicka-Misiak I, Wieczorek PP. Polyphenols and Pharmacological Screening of a Monarda fistulosa L. dry Extract Based on a Hydrodistilled Residue By-Product. Front Pharmacol 2021; 12:563436. [PMID: 33995001 PMCID: PMC8118672 DOI: 10.3389/fphar.2021.563436] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
This study aimed to determine the composition and content of polyphenols in the dry extract obtained from the hydrodistilled residue by-product of the wild bergamot (Monarda fistulosa L., Lamiaceae Martinov family) herb (MFDE) and to evaluate its safety and pharmacological properties. The total phenolic content (TPC) in the MFDE was 120.64 mg GAE/g. The high-performance liquid chromatography (HPLC) analysis showed the presence of a plethora of phenolic compounds, including hydroxycinnamic acids and flavone derivatives in the MFDE, with rosmarinic acid and luteolin-7-O-glucoside being the main components. With an IC50 value of 0.285 mg/mL, it was found to be a strong DPPH radical scavenger. The acute toxicity study results indicate that the oral administration of MFDE to rats at the doses of 500–5,000 mg/kg did not produce any side effects or death in animals which indicates its safety. The results of the in vivo assay showed that the MFDE dose-dependently inhibited paw oedema and significantly reduced the number of writings in mice induced by the acetic acid injection suggesting its potent anti-inflammatory and analgesic activities, respectively. The conducted studies revealed that M. fistulosa hydrodistilled residue by-product could be regarded as a new natural source of polyphenols with valuable pharmacological properties.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | | |
Collapse
|
10
|
Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers. PLANTS 2020; 9:plants9060691. [PMID: 32481758 PMCID: PMC7356345 DOI: 10.3390/plants9060691] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
Abstract
Edible flowers are consumed for their appearance, colours, nutritional and healthy properties, but the use is limited by the actual number of the species. Seven edible flowers of the Lamiaceae family (Ocimeae and Mentheae tribes) were investigated: Monarda didyma ‘Fireball’, Nepeta × faassenii ‘Six Hills Giant’, Ocimum basilicum ‘Blue Spice’, O. basilicum ‘Cinnamon’, Ocimum × citriodorum, Salvia discolor, and Salvia microphylla ‘Hot Lips’. Total soluble sugars, proteins, polyphenols, carotenoids, ascorbic acid and antioxidant activity were detected. The species of the Mentheae tribe contained higher sugar content than Ocimeae flowers, the opposite with regard to protein content. Ocimeae tribe flowers showed high polyphenols and carotenoids content. The Ocimeae tribe together with two specie of the Mentheae tribe showed an aroma profile dominated by sesquiterpene hydrocarbons (58.0% in S. discolor to 77.9% in Ocimum × citriodorum). Oxygenated monoterpenes prevailed in Nepeta and Monarda, also present in the essential oil of this latter species (84.5%). By contrast, Nepeta and S. discolor evidenced non-terpenes as the principal class (41.2% and 77.5%, respectively), while the oxygenated sesquiterpene was the main one in S. microphylla. The two varieties of Ocimum spp. showed oxygenated monoterpenes as the main class of volatiles.
Collapse
|
11
|
Akdeniz M, Ertas A, Yener I, Firat M, Kolak U. Phytochemical and biological investigations on two Nepeta species: Nepeta heliotropifolia and N. congesta subsp. cryptantha. J Food Biochem 2019; 44:e13124. [PMID: 31869453 DOI: 10.1111/jfbc.13124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 11/27/2022]
Abstract
In the present study, the essential oil and aroma compositions of Nepeta heliotropifolia (NH) and N. congesta subsp. cryptantha (NC) were determined by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC/FID), and their phenolic compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, antioxidant, cytotoxic, anticholinesterase, urease, and tyrosinase activities of essential oils obtained from NH and NC aerial parts and ethanol extracts prepared from different parts of NH and NC were investigated. The major constituent of water-distilled essential oils was found to be germacrene D (36.7% and 38.5%, respectively), and their main aroma component was eucalyptol (48.0% and 24.7%, respectively). Among the studied parts of NH and NC, their flowers extracts were found to be the richest in phenolic compounds and in which the most abundant compound was rosmarinic acid (8,909.91 and 4,317.20 μg/g, respectively). NH and NC flower extracts exhibited also strong antioxidant activity in DPPH, ABTS, and CUPRAC assays. Among the tested samples, NH essential oil indicated the best cytotoxic effect against PDF, HT-29, and MCF-7 (IC50 52.34, 25.89, and 44.70 μg/ml, respectively), and the highest butyrylcholinesterase (77.21 ± 1.12% inhibition) and moderate acetylcholinesterase (41.36 ± 0.69% inhibition) inhibitory activities. PRACTICAL APPLICATIONS: This is the first report on the essential oil and aroma compositions, the phenolic compounds, the antioxidant with total phenolic and flavonoid contents, cytotoxic, anticholinesterase, urease, and tyrosinase activities of Nepeta heliotropifolia and N. congesta subsp. cryptantha, except for their essential oil compositions. The reported results suggested that Nepeta heliotropifolia and N. congesta subsp. cryptantha flowers being rich in rosmarinic acid and having strong antioxidant potential, and NH essential oil possessing significant cytotoxic and butyrylcholinesterase inhibitory effect could be source for nutraceutical, food, and drug industries.
Collapse
Affiliation(s)
- Mehmet Akdeniz
- The Council of Forensic Medicine, Ministry of Justice, Diyarbakir, Turkey
| | - Abdulselam Ertas
- Faculty of Pharmacy, Department of Pharmacognosy, Dicle University, Diyarbakir, Turkey
| | - Ismail Yener
- Faculty of Pharmacy, Department of Analytical Chemistry, Dicle University, Diyarbakir, Turkey
| | - Mehmet Firat
- Faculty of Education, Department of Biology, Van Yüzüncü Yıl University, Van, Turkey
| | - Ufuk Kolak
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|