1
|
Mello FV, Marmelo I, Fogaça FHS, Déniz FL, Alonso MB, Maulvault AL, Torres JPM, Marques A, Fernandes JO, Cunha SC. Behavior of diclofenac from contaminated fish after cooking and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5964-5972. [PMID: 38437521 DOI: 10.1002/jsfa.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Seafood consumers are widely exposed to diclofenac due to the high contamination levels often present in aquatic organisms. It is a potential risk to public health due its endocrine disruptor properties. Limited information is available about diclofenac behavior after food digestion to enable a more realistic scenario of consumer exposure. This study aimed to evaluate cooking effects on diclofenac levels, and determine diclofenac bioaccessibility by an in vitro digestion assay, using commercial fish species (seabass and white mullet) as models. The production of the main metabolite 4'-hydroxydiclofenac was also investigated. Fish hamburgers were spiked at two levels (150 and 1000 ng g-1) and submitted to three culinary treatments (roasting, steaming and grilling). RESULTS The loss of water seems to increase the diclofenac levels after cooking, except in seabass with higher levels. The high bioaccessibility of diclofenac (59.1-98.3%) observed in both fish species indicates that consumers' intestines are more susceptible to absorption, which can be worrisome depending on the level of contamination. Contamination levels did not affect the diclofenac bioaccessibility in both species. Seabass, the fattest species, exhibited a higher bioaccessibility of diclofenac compared to white mullet. Overall, cooking decreased diclofenac bioaccessibility by up to 40% in seabass and 25% in white mullet. The main metabolite 4'-hydroxydiclofenac was not detected after cooking or digestion. CONCLUSION Thus, consumption of cooked fish, preferentially grilled seabass and steamed or baked white mullet are more advisable. This study highlights the importance to consider bioaccessibility and cooking in hazard characterization studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
| | - Isa Marmelo
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- 4UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology - NOVA University of Lisbon, Caparica, Portugal
- CIIMAR, Universidade do Porto, Porto, Portugal
| | - Fabíola H S Fogaça
- Laboratory of Bioaccessibility, Embrapa Food Agroindustry, Rio de Janeiro, Brazil
| | - Fernando Lafont Déniz
- SCAI, Mass Spectrometry and Chromatography Lab, Campus Universitario de Rabanales. Edificio Ramón y Cajal, Córdoba, Spain
| | - Mariana B Alonso
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luísa Maulvault
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- 4UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology - NOVA University of Lisbon, Caparica, Portugal
| | - João Paulo M Torres
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Marques
- IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura e Valorização, I.P, Lisboa, Portugal
- CIIMAR, Universidade do Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Fu Y, Du H, Wang P, Yin N, Cai X, Geng Z, Li Y, Cui Y. Effects of foods and food components on the in vitro bioaccessibility of total arsenic and arsenic species from Hizikia fusiforme seaweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165775. [PMID: 37499825 DOI: 10.1016/j.scitotenv.2023.165775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Seaweed is an important food source, especially in many Asian countries, because of its high nutritional value; however, increasing arsenic (As) accumulation may pose serious hazards to human health. The influence of food components on As bioaccessibility and transformation in the high As-containing seaweed Hizikia fusiforme was determined using an in vitro gastrointestinal digestion method. The results showed that co-digestion with several daily foods (such as celery, broccoli, onion, green chili, tomato) produced a higher As bioaccessibility (approximately 6-11 % increase) compared with that of seaweed alone. Vegetables such as fennel (Foeniculum valgare Mill.), celery (Apium grareolens L.), blanched garlic leaves (Allium sativum L.), scallions (Allium fistulosum L.), ginger (Zingiber officinale Rosc.), and green pepper (Capsicum frutescens L. vat. grussum Bailey) decreased bioaccessible inorganic As (18-35 %) in both the gastric and small intestinal phases. Meanwhile, the process of reducing As(V) to As(III) also occurred during co-digestion with some food matrices. Egg white and other animal proteins were the most effective reducing agents, transforming >70 % As(V) into As(III) in the solution system. These results may have important implications for health risk assessment via co-consumption. The present study provides the first evidence showing that the co-consumption of some vegetables and proteins leads to a higher toxicity of inorganic arsenic-containing food. In addition, the positive and negative effects of co-digestion on the bioaccessibility of essential metals (iron, manganese) compared to single digestion were evaluated in this study.
Collapse
Affiliation(s)
- Yaqi Fu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yanshan Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China.
| |
Collapse
|
3
|
Packull-McCormick S, Cowan A, Stark KD, Low M, Gamberg M, Swanson H, Laird B. Mercury bioaccessiblity in freshwater fish species from northern Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165624. [PMID: 37478927 DOI: 10.1016/j.scitotenv.2023.165624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Indigenous communities in northern Canada rely on locally harvested traditional foods, including fish, which provides them with nutritional, cultural, and social benefits. However, mercury exposure from fish consumption can pose a health risk for populations that consume large amounts of fish with elevated mercury concentrations. The bioaccessiblity of mercury in the tissue of northern Canadian freshwater fish is not yet known. To address this, samples from five commonly consumed freshwater fish species (Lake Trout, Northern Pike, Walleye, Lake Whitefish, and Burbot) caught from lakes in the Northwest Territories and Yukon, Canada were examined. Total mercury concentrations, fatty acid composition, and total mercury bioaccessibility differed significantly among fish species and lakes. Mean total mercury bioaccessibility using an in vitro gastrointestinal model ranged between 56 % and 96 % in muscle tissue across fish species and waterbodies examined and was 39 % in liver tissue from Burbot. Mean total mercury bioaccessibility was much lower (range: 38 % to 42 %) for a subset of samples run through only the gastric phase of the digestion model. Total mercury bioaccessibility was significantly lower (on average 40 % lower) in a subset of samples that were pan-fried in water. Thus, although cooking increased total mercury concentrations in pan-fried fish samples (likely due to moisture loss), bioaccessible concentrations of total mercury were lower (on average 32 % lower). Results from this study contribute to addressing a large knowledge gap in the literature regarding bioaccessibility of total mercury in northern freshwater fish species. To the best of our knowledge, this is the first study to examine mercury bioaccessibility in raw and cooked liver samples from freshwater fish. It also adds to the growing literature indicating that mercury bioaccessibility varies among fish species, locations, and cooking/preparation methods.
Collapse
Affiliation(s)
- Sara Packull-McCormick
- School of Public Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W, Waterloo, Canada
| | - Alicia Cowan
- School of Public Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W, Waterloo, Canada
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W, Waterloo, Canada
| | - Mike Low
- Dehcho Aboriginal Aquatic Resources & Oceans Management, Fort Simpson, NT, Canada
| | - Mary Gamberg
- Gamberg Consulting, 11267, Whitehorse, Yukon, Canada
| | - Heidi Swanson
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Ave W, Waterloo, Canada
| | - Brian Laird
- School of Public Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W, Waterloo, Canada.
| |
Collapse
|
4
|
Soy Protein Isolate Interacted with Acrylamide to Reduce the Release of Acrylamide in the In Vitro Digestion Model. Foods 2023; 12:foods12061136. [PMID: 36981063 PMCID: PMC10048519 DOI: 10.3390/foods12061136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Acrylamide (AA), a common carcinogen, has been found in many dietary products.. This study aimed to explore the interaction of soybean protein isolate (SPI) with AA and further research the different effects of SPI on the AA release due to interactions in the in vitro digestion model. Analysis of variance was used to analyze the data. The results suggested that AA could bind with SPI in vitro, leading to the variation in SPI structure. The intrinsic fluorescence of SPI was quenched by AA via static quenching. The non-covalent (van der Waals forces and hydrogen bonding) and covalent bonds were the main interaction forces between SPI and AA. Furthermore, the release of AA significantly decreased due to its interaction with SPI under simulated gastrointestinal conditions. SPI had different effects on the AA release rate after different treatments. The thermal (80, 85, 90, and 95 °C for either 10 or 20 min) and ultrasound (200, 300, and 400 W for either 15, 30, or 60 min) treatments of SPI were useful in reducing the release of AA. However, the high pressure-homogenized (30, 60, 90, and 120 MPa once, twice, or thrice) treatments of SPI were unfavorable for reducing the release of AA.
Collapse
|
5
|
Cunha SC, Gadelha JR, Mello F, Marmelo I, Marques A, Fernandes JO. Effects of Green Tea Marinade in the Bioaccessibility of Tonalide and Benzophenone 3 in Cooked European Seabass. Molecules 2022; 27:molecules27154873. [PMID: 35956823 PMCID: PMC9370058 DOI: 10.3390/molecules27154873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Fish consumption is an indicator of human exposure to personal care products (PCP) such as tonalide (AHTN) and benzophenone 3 (BP3). Although most fish consumed is cooked, the impact of cooking procedures on PCP levels is difficult to evaluate. Hence, the aim of this work was to provide thorough information on the stability and bioaccessibility of AHTN and BP3 upon cooking and in vitro digestion. A green tea (Camellia sinensis) marinade, rich in polyphenol, was used as mitigating strategy to reduce these contaminants. Roasting and frying reduced AHTN and BP3 levels in European seabass (Dicentrarchus labrax) spiked samples. Additionally, the green tea marinade promoted a reduction of up to 47% AHTN and 35% BP3. Bioaccessibility of AHTN was higher (up to 45%), and increased with the use of green tea marinades. BP3 showed a bioaccessibility below 19% in all cooked samples. Overall, a decrease in PCP levels was observed after cooking; this decrease was even more pronounced when marination was previously used. However, this decrease is cancelled out by the fact that the bioaccessible fraction of the contaminants increases in an inverse way; therefore, none of these processes can be considered a mitigating alternative.
Collapse
Affiliation(s)
- Sara C. Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.R.G.); (F.M.); (J.O.F.)
- Correspondence: ; Tel.: +351-220428639; Fax: +351-226093390
| | - Juliana R. Gadelha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.R.G.); (F.M.); (J.O.F.)
| | - Flávia Mello
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.R.G.); (F.M.); (J.O.F.)
| | - Isa Marmelo
- IPMA, Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection (DivAV), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; (I.M.); (A.M.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - António Marques
- IPMA, Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection (DivAV), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; (I.M.); (A.M.)
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - José O. Fernandes
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (J.R.G.); (F.M.); (J.O.F.)
| |
Collapse
|
6
|
de Almeida Rodrigues P, Ferrari RG, Kato LS, Hauser-Davis RA, Conte-Junior CA. A Systematic Review on Metal Dynamics and Marine Toxicity Risk Assessment Using Crustaceans as Bioindicators. Biol Trace Elem Res 2022; 200:881-903. [PMID: 33788164 DOI: 10.1007/s12011-021-02685-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Metals, many of which are potentially toxic, are present in the aquatic environment originated from both natural and anthropogenic sources. In these ecosystems, these elements are mostly deposited in the sediment, followed by water dissolution, potentially contaminating resident biota. Among several aquatic animals, crustaceans are considered excellent bioindicators, as they live in close contact with contaminated sediment. The accumulation of metal, whether they are classified as essential, when in excessive quantities or nonessential, not only cause damage to the health of these animals, but also to the man who consumes seafood. Among the main toxic elements to animal and human health are aluminum, arsenic, cadmium, chromium, copper, lead, mercury, nickel and silver. In this context, this systematic review aimed to investigate the dynamics of these metals in water, the main bioaccumulative tissues in crustaceans, the effects of these contaminants on animal and human health, and the regulatory limits for these metals worldwide. A total of 91 articles were selected for this review, and an additional 68 articles not found in the three assessed databases were considered essential and included, totaling 159 articles published between 2010 and 2020. Our results indicate that both chemical speciation and abiotic factors such as pH, oxygen and salinity in aquatic environments affect element bioavailability, dynamics, and toxicity. Among crustaceans, crabs are considered the main bioindicator biological system, with the hepatopancreas appearing as the main bioaccumulator organ. Studies indicate that exposure to these elements may result in nervous, respiratory, and reproductive system effects in both animals and humans. Finally, many studies indicate that the concentrations of these elements in crustaceans intended for human consumption exceed limits established by international organizations, both with regard to seafood metal contents and well as daily, weekly, or monthly intake limits set for humans, indicating consumer health risks.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraiba, Brazil.
| | - Lilian Seiko Kato
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, 24230-340, Brazil
- Chemistry Institute, Department of Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
7
|
The preferential accumulation of cadmium ions among various tissues in mice. Toxicol Rep 2022; 9:111-119. [PMID: 35059304 PMCID: PMC8760390 DOI: 10.1016/j.toxrep.2022.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is hazardous to human health because of its toxicity and long half-life of clearance. Many studies have explored the relationship between chronic Cd exposure and different human diseases. However, most of the studies limited the study targets of Cd toxicity to two or three organ systems. The goal of this study was to establish a mouse model of Cd accumulation in most organ systems and to particularly investigate the potential toxic effects of Cd to the cardiovascular system. Mice were divided into three groups: the control group, Cd-100 group, and Cd-200 group. In the control group, Cd was detected in the kidney, lung, liver, heart and urine but was undetectable in the aorta, intestine, thigh bone, spinal bone and serum. Upon chronic exposure in the Cd-100 and Cd-200 groups, Cd accumulated in all tissues, with a dramatic increase in concentration. We confirmed that Cd could accumulate significantly in the heart and aorta upon chronic exposure. This finding might help to explain the potential toxic effects of Cd on these organs. In addition, the calcium concentration in the bones and kidney declined when the exposure to Cd increased. This finding aligned with the negative effects of Cd on bony mineralization and the potential direct toxic effects of Cd on bones. The impacts of Cd on the cardiovascular system were explored. Histologically, chronic Cd exposure led to myocytes hypertrophy and myocardial architecture disarray in the Cd-100 group compared to those in the control group. Our research confirms that Cd can accumulate in all of the organs studied upon chronic exposure, and suggests that the toxicity of Cd accumulation may play important roles in mediating the pathophysiologic effects in these target organs, especially the bone and heart.
Collapse
|
8
|
Jinadasa BKKK, Jayasinghe GDTM, Pohl P, Fowler SW. Mitigating the impact of mercury contaminants in fish and other seafood-A review. MARINE POLLUTION BULLETIN 2021; 171:112710. [PMID: 34252733 DOI: 10.1016/j.marpolbul.2021.112710] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a well-known toxicant which enters the marine environment by both natural and anthropogenic sources. Consumption of fish and other seafood that contain methylmercury (MeHg) is a leading source of Hg exposure in humans. Considerable efforts have been made to mitigate the Hg presence and reduce its risks to humans. In this review the acknowledged methods of mitigation are summarized such as regulation and maximum allowable limits, and culinary treatments. In addition, selected industrial level trials are reviewed, and studies on Hg intoxication and the protective effects of the essential trace element, selenium (Se), are discussed. In view of the available literature, Hg reduction in fish and other seafood on a large industrial scale still is largely unsuccessful. Hence, more research and further attempts are necessary in order to better mitigate the Hg problem in fish and other seafood products.
Collapse
Affiliation(s)
- B K K K Jinadasa
- Analytical Chemistry Laboratory (ACL), National Aquatic Resources Research & Development Agency (NARA), Colombo-15, Sri Lanka; Department of Food Science & Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila (NWP), Sri Lanka.
| | - G D T M Jayasinghe
- Analytical Chemistry Laboratory (ACL), National Aquatic Resources Research & Development Agency (NARA), Colombo-15, Sri Lanka
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Scott W Fowler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
9
|
Risk of Mercury Ingestion from Canned Fish in Poland. Molecules 2020; 25:molecules25245884. [PMID: 33322734 PMCID: PMC7764699 DOI: 10.3390/molecules25245884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, total mercury content was determined in 84 canned fish corresponding to commonly consumed brands (over 14 different producers), which were purchased from local markets in Poland in the years 2019–2020. For comparison purposes, samples of both the matrix in which the fish were kept along with the seafood samples were measured. The analyses were carried out using the cold vapor AAS technique. Statistical analyses were employed to identify significant differences in mercury content in relation to the selected criteria such as fish species, type of fish (predatory, non-predatory) and the producer brand. The obtained results were compared against domestic and international standards as well as with the literature data in order to evaluate the safety of the canned fish consumption. The study revealed that none of canned fish exceeded the acceptable levels set by the FAO/WHO. The highest amount of Hg was recorded for canned tuna (maximum 351.30 µg/kg, mean 74.38 µg/kg). Further, the estimated tolerable dose of weekly mercury intake suggests that the consumption of over 1.8 cans of fish with the highest mean mercury content should not pose a risk to consumers in Poland according to international standards. Among the ten highest mean results for mercury, five of them belonged to canned tuna (Bonito species) kept in different matrices. These consisted of seven domestic and three imported brands of fish products, which is a worrying message for a local community. Mercury content in predatory fish differed significantly from the results gathered for non-predatory fish and the total amount of mercury in studied canned fish corresponded to their status in the aquatic food chain. Moreover, significant differences were stated between various fish species and fishing areas. Fish caught in the Atlantic Ocean (cod and herring) presented higher mercury content than the ones from closed seas.
Collapse
|