1
|
Pang X, He X, Yang Y, Wang L, Sun Y, Cao H, Liang Y. NeuTox 2.0: A hybrid deep learning architecture for screening potential neurotoxicity of chemicals based on multimodal feature fusion. ENVIRONMENT INTERNATIONAL 2024; 195:109244. [PMID: 39742830 DOI: 10.1016/j.envint.2024.109244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025]
Abstract
Chemically induced neurotoxicity is a critical aspect of chemical safety assessment. Traditional and costly experimental methods call for the development of high-throughput virtual screening. However, the small datasets of neurotoxicity have limited the application of advanced deep learning techniques. The current study developed a hybrid deep learning architecture, NeuTox 2.0, through multimodal feature fusion for enhanced prediction accuracy and generalization ability. We incorporated transfer learning based on self-supervised learning, graph neural networks, and molecular fingerprints/descriptors. Four datasets were used to profile neurotoxicity; these were related to blood-brain barrier permeability, neuronal cytotoxicity, microelectrode array-based neural activity, and mammalian neurotoxicity. Comprehensive performance evaluations demonstrated that NeuTox 2.0 has relatively higher predictive capability across all statistical metrics. Specifically, NeuTox 2.0 exhibits remarkable performance in three of the four datasets. In the BBB dataset, although it does not outperform the PaDEL descriptor model, its performance closely approximates that of the top single-modal model. The ablation experiments indicated that NeuTox 2.0 can learn the deeper structural differences of molecules from various feature extractions and capture complex interactions and mapping relationships between various modalities, thereby improving performance for neurotoxicity prediction. Evaluations of anti-noise ability indicated that NeuTox 2.0 has excellent noise resistance relative to traditional machine learning. We applied the NeuTox 2.0 model to predict the neurotoxicity of 315,790 compounds in the REACH database. The results showed that 701 compounds exhibited potential neurotoxicity in the four neurotoxicity-related predictions. In conclusion, NeuTox 2.0 can be used as an efficient tool for early neurotoxicity screening of environmental chemicals.
Collapse
Affiliation(s)
- Xudi Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xuejun He
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ying Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
2
|
Yu CX, Tan JW, Rullah K, Imran S, Tham CL. Insight parameter drug design for human β-tryptase inhibition integrated molecular docking, QSAR, molecular dynamics simulation, and pharmacophore modelling studies of α-keto-[1,2,4]-oxadiazoles. J Biomol Struct Dyn 2023; 41:12978-12996. [PMID: 36709457 DOI: 10.1080/07391102.2023.2171131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Dengue hemorrhagic fever (DHF) is severe dengue with a hallmark of vascular leakage. β-tryptase has been found to promote vascular leakage in DHF patients, which could be a potential target for DHF treatment. This study aims to develop a theoretical background for designing and selecting human β-tryptase inhibitors through computational studies. Thirty-four α-keto-[1,2,3]-oxadiazoles scaffold-based compounds were used to generate 2D-QSAR models and for molecular docking studies with β-tryptase (PDB Code 4A6L). In addition, molecular dynamics (MD) simulation and molecular mechanics generalised born surface area (MM-GBSA) analysis on the binding of the reported most active compound, compound 11e, towards β-tryptase were performed. Finally, a structure-based pharmacophore model was generated. The selected 2D-QSAR models have statistically proven good models by internal and external validation as well as the y-randomization test. The docking results of compound 11e showed lower CDOCKER energy than the 4A6L co-crystallised ligand and a similar binding pattern as the 4A6L co-crystallised ligand. From molecular dynamics simulation, 4A6L in compound 11e bound state has RMSD below 2 Å throughout the 500 ns simulation, indicating the docked complex is stable. Besides, MM-GBSA analysis suggested the 4A6L-compound 11e docked complex (-66.04 Kcal/mol) is structurally as stable as the 4A6L-native ligand co-crystallized structure (-66.84 Kcal/mol). The best pharmacophore model identified features included hydrogen bond acceptor, ionic interaction, hydrophobic interaction, and aromatic ring, which contribute to the inhibitory potency of a compound. This study supplied insight and knowledge for developing novel chemical compounds with improved inhibition of β-tryptase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chai Xin Yu
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jian Wei Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Zhao X, Sun Y, Zhang R, Chen Z, Hua Y, Zhang P, Guo H, Cui X, Huang X, Li X. Machine Learning Modeling and Insights into the Structural Characteristics of Drug-Induced Neurotoxicity. J Chem Inf Model 2022; 62:6035-6045. [PMID: 36448818 DOI: 10.1021/acs.jcim.2c01131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neurotoxicity can be resulted from many diverse clinical drugs, which has been a cause of concern to human populations across the world. The detection of drug-induced neurotoxicity (DINeurot) potential with biological experimental methods always required a lot of budget and time. In addition, few studies have addressed the structural characteristics of neurotoxic chemicals. In this study, we focused on the computational modeling for drug-induced neurotoxicity with machine learning methods and the insights into the structural characteristics of neurotoxic chemicals. Based on the clinical drug data with neurotoxicity effects, we developed 35 different classifiers by combining five different machine learning methods and seven fingerprint packages. The best-performing model achieved good results on both 5-fold cross-validation (balanced accuracy of 76.51%, AUC value of 0.83, and MCC value of 0.52) and external validation (balanced accuracy of 83.63%, AUC value of 0.87, and MCC value of 0.67). The model can be freely accessed on the web server DINeuroTpredictor (http://dineurot.sapredictor.cn/). We also analyzed the distribution of several key molecular properties between neurotoxic and non-neurotoxic structures. The results indicated that several physicochemical properties were significantly different between the neurotoxic and non-neurotoxic compounds, including molecular polar surface area (MPSA), AlogP, the number of hydrogen bond acceptors (nHAcc) and donors (nHDon), the number of rotatable bonds (nRotB), and the number of aromatic rings (nAR). In addition, 18 structural alerts responsible for chemical neurotoxicity were identified. The structural alerts have been integrated with our web server SApredictor (http://www.sapredictor.cn). The results of this study could provide useful information for the understanding of the structural characteristics and computational prediction for chemical neurotoxicity.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Yuhao Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Zhaoyang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| |
Collapse
|
4
|
Guo H, Zhang P, Zhang R, Hua Y, Zhang P, Cui X, Huang X, Li X. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases. Front Immunol 2022; 13:1015409. [PMID: 36353637 PMCID: PMC9637949 DOI: 10.3389/fimmu.2022.1015409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 09/12/2023] Open
Abstract
The incidence and complexity of drug-induced autoimmune diseases (DIAD) have been on the rise in recent years, which may lead to serious or fatal consequences. Besides, many environmental and industrial chemicals can also cause DIAD. However, there are few effective approaches to estimate the DIAD potential of drugs and other chemicals currently, and the structural characteristics and mechanism of action of DIAD compounds have not been clarified. In this study, we developed the in silico models for chemical DIAD prediction and investigated the structural characteristics of DIAD chemicals based on the reliable drug data on human autoimmune diseases. We collected 148 medications which were reported can cause DIAD clinically and 450 medications that clearly do not cause DIAD. Several different machine learning algorithms and molecular fingerprints were combined to develop the in silico models. The best performed model provided the good overall accuracy on validation set with 76.26%. The model was made freely available on the website http://diad.sapredictor.cn/. To further investigate the differences in structural characteristics between DIAD chemicals and non-DIAD chemicals, several key physicochemical properties were analyzed. The results showed that AlogP, molecular polar surface area (MPSA), and the number of hydrogen bond donors (nHDon) were significantly different between the DIAD and non-DIAD structures. They may be related to the DIAD toxicity of chemicals. In addition, 14 structural alerts (SA) for DIAD toxicity were detected from predefined substructures. The SAs may be helpful to explain the mechanism of action of drug induced autoimmune disease, and can used to identify the chemicals with potential DIAD toxicity. The structural alerts have been integrated in a structural alert-based web server SApredictor (http://www.sapredictor.cn). We hope the results could provide useful information for the recognition of DIAD chemicals and the insights of structural characteristics for chemical DIAD toxicity.
Collapse
Affiliation(s)
- Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Peitao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
5
|
Kan HL, Tung CW, Chang SE, Lin YC. In silico prediction of parkinsonian motor deficits-related neurotoxicants based on the adverse outcome pathway concept. Arch Toxicol 2022; 96:3305-3314. [PMID: 36175685 DOI: 10.1007/s00204-022-03376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Exposure to neurotoxicants has been associated with Parkinson's disease (PD). Limited by the clinical variation in the signs and symptoms as well as the slow disease progression, the identification of parkinsonian neurotoxicants relies on animal models. Here, we propose an innovative in silico model for the prediction of parkinsonian neurotoxicants. The model was designed based on a validated adverse outcome pathway (AOP) for parkinsonian motor deficits initiated from the inhibition of mitochondrial complex I. The model consists of a molecular docking model for mitochondrial complex I protein to predict the molecular initiating event and a neuronal cytotoxicity Quantitative Structure-Activity Relationships (QSAR) model to predict the cellular outcome of the AOP. Four known PD-related complex I inhibitors and four non-neurotoxic chemicals were utilized to develop the threshold of the models and to validate the model, respectively. The integrated model showed 100% specificity in ruling out the non-neurotoxic chemicals. The screening of 41 neurotoxicants and complex I inhibitors with the model resulted in 16 chemicals predicted to induce parkinsonian disorder through the molecular initiating event of mitochondrial complex I inhibition. Five of them, namely cyhalothrin, deguelin, deltamethrin, diazepam, and permethrin, are cases with direct evidence linking them to parkinsonian motor deficit-related signs and symptoms. The neurotoxicant prediction model for parkinsonian motor deficits based on the AOP concept may be useful in prioritizing chemicals for further evaluations on PD potential.
Collapse
Affiliation(s)
- Hung-Lin Kan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan.
| | - Shao-En Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Ying-Chi Lin
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
6
|
Zhang H, Zhang HR, Hu ML, Qi HZ. Development of binary classification models for assessment of drug-induced liver injury in humans using a large set of FDA-approved drugs. J Pharmacol Toxicol Methods 2022; 116:107185. [PMID: 35623583 DOI: 10.1016/j.vascn.2022.107185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/13/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023]
Abstract
Drug-induced liver injury (DILI) has been identified as one of the major causes for drugs withdrawn from the market, and even termination during the late stages of development. Therefore, it is imperative to evaluate the DILI potential of lead compounds during the research and development process. Although various computational models have been developed to predict DILI, most of which applied the DILI data were extracted from preclinical sources. In this investigation, the in silico prediction models for DILI were constructed based on 1140 FDA-approved drugs by using naïve Bayes classifier approach. The genetic algorithm method was applied for the molecular descriptors selection. Among these established prediction models, the NB-11 model based on eight molecular descriptors combined with ECFP_18 showed the best prediction performance for DILI, which gave 91.7% overall prediction accuracy for the training set, and 68.9% concordance for the external test set. Therefore, the established NB-11 prediction model can be used as a reliable virtual screening tool to predict DILI adverse effect in the early stages of drug design. In addition, some new structural alters for DILI were identified, which could be used for structural optimization in the future drug design by medicinal chemists.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Hong-Rui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Mei-Ling Hu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Hua-Zhao Qi
- College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
7
|
Ahmed U, Ahmed R, Masoud MS, Tariq M, Ashfaq UA, Augustine R, Hasan A. Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomed Mater 2021; 16:042003. [PMID: 33686970 DOI: 10.1088/1748-605x/abe6d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advanced biomaterials are increasingly used for numerous medical applications from the delivery of cancer-targeted therapeutics to the treatment of cardiovascular diseases. The issues of foreign body reactions induced by biomaterials must be controlled for preventing treatment failure. Therefore, it is important to assess the biocompatibility and cytotoxicity of biomaterials on cell culture systems before proceeding to in vivo studies in animal models and subsequent clinical trials. Direct use of biomaterials on animals create technical challenges and ethical issues and therefore, the use of non-animal models such as stem cell cultures could be useful for determination of their safety. However, failure to recapitulate the complex in vivo microenvironment have largely restricted stem cell cultures for testing the cytotoxicity of biomaterials. Nevertheless, properties of stem cells such as their self-renewal and ability to differentiate into various cell lineages make them an ideal candidate for in vitro screening studies. Furthermore, the application of stem cells in biomaterials screening studies may overcome the challenges associated with the inability to develop a complex heterogeneous tissue using primary cells. Currently, embryonic stem cells, adult stem cells, and induced pluripotent stem cells are being used as in vitro preliminary biomaterials testing models with demonstrated advantages over mature primary cell or cell line based in vitro models. This review discusses the status and future directions of in vitro stem cell-based cultures and their derivatives such as spheroids and organoids for the screening of their safety before their application to animal models and human in translational research.
Collapse
Affiliation(s)
- Uzair Ahmed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000 Punjab, Pakistan
| | | | | | | | | | | | | |
Collapse
|