1
|
Kim JW, Kim HS, Kim HR, Chung KH. Next generation risk assessment of biocides (PHMG-p and CMIT/MIT)-induced pulmonary fibrosis using adverse outcome pathway-based transcriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134986. [PMID: 38944992 DOI: 10.1016/j.jhazmat.2024.134986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Next-generation risk assessment (NGRA) has emerged as a promising alternative to non-animal studies owing to the increasing demand for the risk assessment of inhaled toxicants. In this study, NGRA was used to assess the inhalation risks of two biocides commonly used as humidifier disinfectants: polyhexamethylene guanidine phosphate (PHMG-p) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT). Human bronchial epithelial cell transcriptomic data were processed based on adverse outcome pathways and used to establish transcriptome-based points of departure (tPODs) for each biocide. tPOD values were 0.00500-0.0510 μg/cm2 and 0.0342-0.0544 μg/cm2 for PHMG-p and CMIT/MIT, respectively. tPODs may provide predictive power comparable to that of traditional animal-based PODs (aPODs). The tPOD-based NGRA determined that both PHMG-p and CMIT/MIT present a high inhalation risk. Moreover, the identified PHMG-p posed a higher risk than CMIT/MIT, and children were identified as more susceptible population compared to adults. This finding is consistent with observations from actual exposure events. Our findings suggest that NGRA with transcriptomics offers a reliable approach for risk assessment of specific humidifier disinfectant biocides, while acknowledging the limitations of current models and in vitro systems, particularly regarding uncertainties in pharmacokinetics (PK) and pharmacodynamics (PD).
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong 30019, South Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Suvorov A. The dose disrupts the pathway: application of Paracelsus principle to mechanistic toxicology. Toxicol Sci 2024; 200:228-234. [PMID: 38713198 DOI: 10.1093/toxsci/kfae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Arguably the most famous principle of toxicology is "The dose makes the poison" formulated by Paracelsus in the 16th century. Application of the Paracelsus's principle to mechanistic toxicology may be challenging as one compound may affect many molecular pathways at different doses with different and often nonlinear dose-response relationships. As a result, many mechanistic studies of environmental and occupational compounds use high doses of xenobiotics motivated by the need to see a clear signal indicating disruption of a particular molecular pathway. This approach ignores the possibility that the same xenobiotic may affect different molecular mechanism(s) at much lower doses relevant to human exposures. To amend mechanistic toxicology with a simple and concise guiding principle, I suggest recontextualization of Paracelsus's following its letter and spirit: "The dose disrupts the pathway". Justification of this statement includes observations that many environmental and occupational xenobiotics affect a broad range of molecular cascades, that most molecular pathways are sensitive to chemical exposures, and that different molecular pathways are sensitive to different doses of a chemical compound. I suggest that this statement may become a useful guidance and educational tool in a range of toxicological applications, including experimental design, comparative analysis of mechanistic hypotheses, evaluation of the quality of toxicological studies, and risk assessment.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
3
|
Bianchi E, Costa E, Harrill J, Deford P, LaRocca J, Chen W, Sutake Z, Lehman A, Pappas-Garton A, Sherer E, Moreillon C, Sriram S, Dhroso A, Johnson K. Discovery Phase Agrochemical Predictive Safety Assessment Using High Content In Vitro Data to Estimate an In Vivo Toxicity Point of Departure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39033510 DOI: 10.1021/acs.jafc.4c03094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Utilization of in vitro (cellular) techniques, like Cell Painting and transcriptomics, could provide powerful tools for agrochemical candidate sorting and selection in the discovery process. However, using these models generates challenges translating in vitro concentrations to the corresponding in vivo exposures. Physiologically based pharmacokinetic (PBPK) modeling provides a framework for quantitative in vitro to in vivo extrapolation (IVIVE). We tested whether in vivo (rat liver) transcriptomic and apical points of departure (PODs) could be accurately predicted from in vitro (rat hepatocyte or human HepaRG) transcriptomic PODs or HepaRG Cell Painting PODs using PBPK modeling. We compared two PBPK models, the ADMET predictor and the httk R package, and found httk to predict the in vivo PODs more accurately. Our findings suggest that a rat liver apical and transcriptomic POD can be estimated utilizing a combination of in vitro transcriptome-based PODs coupled with PBPK modeling for IVIVE. Thus, high content in vitro data can be translated with modest accuracy to in vivo models of ultimate regulatory importance to help select agrochemical analogs in early stage discovery program.
Collapse
Affiliation(s)
- Enrica Bianchi
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| | | | - Joshua Harrill
- Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park ,North Carolina 27709, United States
| | - Paul Deford
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| | - Jessica LaRocca
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| | - Wei Chen
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| | - Zachary Sutake
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| | - Audrey Lehman
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| | | | - Eric Sherer
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| | | | | | - Andi Dhroso
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| | - Kamin Johnson
- Corteva Agriscience, Indianapolis ,Indiana 46268, United States
| |
Collapse
|
4
|
Costa E, Johnson KJ, Walker CA, O’Brien JM. Transcriptomic point of departure determination: a comparison of distribution-based and gene set-based approaches. Front Genet 2024; 15:1374791. [PMID: 38784034 PMCID: PMC11112360 DOI: 10.3389/fgene.2024.1374791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
A key step in assessing the potential human and environmental health risks of industrial and agricultural chemicals is to determine the toxicity point of departure (POD), which is the highest dose level that causes no adverse effect. Transcriptomic POD (tPOD) values have been suggested to accurately estimate toxicity POD values. One step in the most common approach for tPOD determination involves mapping genes to annotated gene sets, a process that might lead to substantial information loss particularly in species with poor gene annotation. Alternatively, methods that calculate tPOD values directly from the distribution of individual gene POD values omit this mapping step. Using rat transcriptome data for 79 molecules obtained from Open TG-GATEs (Toxicogenomics Project Genomics Assisted Toxicity Evaluation System), the hypothesis was tested that methods based on the distribution of all individual gene POD values will give a similar tPOD value to that obtained via the gene set-based method. Gene set-based tPOD values using four different gene set structures were compared to tPOD values from five different individual gene distribution methods. Results revealed a high tPOD concordance for all methods tested, especially for molecules with at least 300 dose-responsive probesets: for 90% of those molecules, the tPOD values from all methods were within 4-fold of each other. In addition, random gene sets based upon the structure of biological knowledge-derived gene sets produced tPOD values with a median absolute fold change of 1.3-1.4 when compared to the original biological knowledge-derived gene set counterparts, suggesting that little biological information is used in the gene set-based tPOD generation approach. These findings indicate using individual gene distributions to calculate a tPOD is a viable and parsimonious alternative to using gene sets. Importantly, individual gene distribution-based tPOD methods do not require knowledge of biological organization and can be applied to any species including those with poorly annotated gene sets.
Collapse
Affiliation(s)
| | | | | | - Jason M. O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| |
Collapse
|
5
|
Villeneuve DL, Blackwell BR, Bush K, Harrill J, Harris F, Hazemi M, Le M, Stacy E, Flynn KM. Transcriptomics-Based Points of Departure for Daphnia magna Exposed to 18 Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38450772 DOI: 10.1002/etc.5838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 03/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a large group of contaminants of concern based on their widespread use, environmental persistence, and potential toxicity. Many traditional models for estimating toxicity, bioaccumulation, and other toxicological properties are not well suited for PFAS. Consequently, there is a need to generate hazard information for PFAS in an efficient and cost-effective manner. In the present study, Daphnia magna were exposed to multiple concentrations of 22 different PFAS for 24 h in a 96-well plate format. Following exposure, whole-body RNA was extracted and extracts, each representing five exposed individuals, were subjected to RNA sequencing. Following analytical measurements to verify PFAS exposure concentrations and quality control on processed cDNA libraries for sequencing, concentration-response modeling was applied to the data sets for 18 of the tested compounds, and the concentration at which a concerted molecular response occurred (transcriptomic point of departure; tPOD) was calculated. The tPODs, based on measured concentrations of PFAS, generally ranged from 0.03 to 0.58 µM (9.9-350 µg/L; interquartile range). In most cases, these concentrations were two orders of magnitude lower than similarly calculated tPODs for human cell lines exposed to PFAS. They were also lower than apical effect concentrations reported for seven PFAS for which some crustacean or invertebrate toxicity data were available, although there were a few exceptions. Despite being lower than most other available hazard benchmarks, D. magna tPODs were, on average, four orders of magnitude greater than the maximum aqueous concentrations of PFAS measured in Great Lakes tributaries. Overall, this high-throughput transcriptomics assay with D. magna holds promise as a component of a tiered hazard evaluation strategy employing new approach methodologies. Environ Toxicol Chem 2024;00:1-16. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, USA
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, USA
- Bioscience Division, Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kendra Bush
- Oak Ridge Institute for Science and Education Research Participant at US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Joshua Harrill
- Biomolecular and Computational Toxicology Division, United States Environmental Protection Agency, NC, USA
| | - Felix Harris
- Oak Ridge Institute for Science and Education Research Participant at US EPA, Biomolecular and Computational Toxicology Division, Oak Ridge, NC, USA
| | - Monique Hazemi
- Oak Ridge Institute for Science and Education Research Participant at US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Michelle Le
- Oak Ridge Institute for Science and Education Research Participant at US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Emma Stacy
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, USA
| | - Kevin M Flynn
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, USA
| |
Collapse
|
6
|
Martin R, Hazemi M, Flynn K, Villeneuve D, Wehmas L. Short-Term Transcriptomic Points of Departure Are Consistent with Chronic Points of Departure for Three Organophosphate Pesticides across Mouse and Fathead Minnow. TOXICS 2023; 11:820. [PMID: 37888672 PMCID: PMC10611195 DOI: 10.3390/toxics11100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
New approach methods (NAMs) can reduce the need for chronic animal studies. Here, we apply benchmark dose (concentration) (BMD(C))-response modeling to transcriptomic changes in the liver of mice and in fathead minnow larvae after short-term exposures (7 days and 1 day, respectively) to several dose/concentrations of three organophosphate pesticides (OPPs): fenthion, methidathion, and parathion. The mouse liver transcriptional points of departure (TPODs) for fenthion, methidathion, and parathion were 0.009, 0.093, and 0.046 mg/Kg-bw/day, while the fathead minnow larva TPODs were 0.007, 0.115, and 0.046 mg/L, respectively. The TPODs were consistent across both species and reflected the relative potencies from traditional chronic toxicity studies with fenthion identified as the most potent. Moreover, the mouse liver TPODs were more sensitive than or within a 10-fold difference from the chronic apical points of departure (APODs) for mammals, while the fathead minnow larva TPODs were within an 18-fold difference from the chronic APODs for fish species. Short-term exposure to OPPs significantly impacted acetylcholinesterase mRNA abundance (FDR p-value <0.05, |fold change| ≥2) and canonical pathways (IPA, p-value <0.05) associated with organism death and neurological/immune dysfunctions, indicating the conservation of key events related to OPP toxicity. Together, these results build confidence in using short-term, molecular-based assays for the characterization of chemical toxicity and risk, thereby reducing reliance on chronic animal studies.
Collapse
Affiliation(s)
- Rubia Martin
- Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Durham, NC 27709, USA;
| | - Monique Hazemi
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Ecology Division, Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Duluth, MN 55804, USA;
| | - Kevin Flynn
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Ecology Division, U.S. Environmental Protection Agency, Duluth, MN 55804, USA; (K.F.); (D.V.)
| | - Daniel Villeneuve
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Ecology Division, U.S. Environmental Protection Agency, Duluth, MN 55804, USA; (K.F.); (D.V.)
| | - Leah Wehmas
- Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, U.S. Environmental Protection Agency, Durham, NC 27709, USA
| |
Collapse
|
7
|
Nelson GM, Carswell GK, Swartz CD, Recio L, Yauk CL, Chorley BN. Early microRNA responses in rodent liver mediated by furan exposure establish dose thresholds for later adverse outcomes. Toxicol Lett 2023; 384:105-114. [PMID: 37517673 PMCID: PMC10530563 DOI: 10.1016/j.toxlet.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
To reduce reliance on long-term in vivo studies, short-term data linking early molecular-based measurements to later adverse health effects is needed. Although transcriptional-based benchmark dose (BMDT) modeling has been used to estimate potencies and stratify chemicals based on potential to induce later-life effects, dose-responsive epigenetic alterations have not been routinely considered. Here, we evaluated the utility of microRNA (miRNA) profiling in mouse liver and blood, as well as in mouse primary hepatocytes in vitro, to indicate mechanisms of liver perturbation due to short-term exposure of the known rodent liver hepatotoxicant and carcinogen, furan. Benchmark dose modeling of miRNA measurements (BMDmiR) were compared to the referent transcriptional (BMDT) and apical (BMDA) estimates. These analyses indicate a robust dose response for 34 miRNAs to furan and involvement of p53-linked pathways in furan-mediated hepatotoxicity, supporting mRNA and apical measurements. Liver-sourced miRNAs were also altered in the blood and primary hepatocytes. Overall, these results indicate mechanistic involvement of miRNA in furan carcinogenicity and provide evidence of their potential utility as accessible biomarkers of exposure and disease.
Collapse
Affiliation(s)
- Gail M Nelson
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Gleta K Carswell
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Carol D Swartz
- Inotiv Co., 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA
| | - Leslie Recio
- ScitoVation, 100 Capitola Drive Suite 106, Durham, NC 27713, USA
| | - Carole L Yauk
- Dept. Of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Brian N Chorley
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Tsai HHD, House JS, Wright FA, Chiu WA, Rusyn I. A tiered testing strategy based on in vitro phenotypic and transcriptomic data for selecting representative petroleum UVCBs for toxicity evaluation in vivo. Toxicol Sci 2023; 193:219-233. [PMID: 37079747 PMCID: PMC10230285 DOI: 10.1093/toxsci/kfad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Hazard evaluation of substances of "unknown or variable composition, complex reaction products and biological materials" (UVCBs) remains a major challenge in regulatory science because their chemical composition is difficult to ascertain. Petroleum substances are representative UVCBs and human cell-based data have been previously used to substantiate their groupings for regulatory submissions. We hypothesized that a combination of phenotypic and transcriptomic data could be integrated to make decisions as to selection of group-representative worst-case petroleum UVCBs for subsequent toxicity evaluation in vivo. We used data obtained from 141 substances from 16 manufacturing categories previously tested in 6 human cell types (induced pluripotent stem cell [iPSC]-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, and MCF7 and A375 cell lines). Benchmark doses for gene-substance combinations were calculated, and both transcriptomic and phenotype-derived points of departure (PODs) were obtained. Correlation analysis and machine learning were used to assess associations between phenotypic and transcriptional PODs and to determine the most informative cell types and assays, thus representing a cost-effective integrated testing strategy. We found that 2 cell types-iPSC-derived-hepatocytes and -cardiomyocytes-contributed the most informative and protective PODs and may be used to inform selection of representative petroleum UVCBs for further toxicity evaluation in vivo. Overall, although the use of new approach methodologies to prioritize UVCBs has not been widely adopted, our study proposes a tiered testing strategy based on iPSC-derived hepatocytes and cardiomyocytes to inform selection of representative worst-case petroleum UVCBs from each manufacturing category for further toxicity evaluation in vivo.
Collapse
Affiliation(s)
- Han-Hsuan Doris Tsai
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - John S House
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Fred A Wright
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27603, USA
- Department of Biological Sciences and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27603, USA
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
9
|
Assessing the neurotoxicity of airborne nano-scale particulate matter in human iPSC-derived neurons using a transcriptomics benchmark dose model. Toxicol Appl Pharmacol 2022; 449:116109. [DOI: 10.1016/j.taap.2022.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
|
10
|
Johnson KJ, Costa E, Marshall V, Sriram S, Venkatraman A, Stebbins K, LaRocca J. A microRNA or messenger RNA point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model. Birth Defects Res 2022; 114:559-576. [PMID: 35596682 PMCID: PMC9324934 DOI: 10.1002/bdr2.2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Traditional developmental toxicity testing practice examines fetal apical endpoints to identify a point of departure (POD) for risk assessment. A potential new testing paradigm involves deriving a POD from a comprehensive analysis of molecular-level change. Here, the rat ketoconazole endocrine-mediated developmental toxicity model was used to test the hypothesis that maternal epigenomic (miRNA) and transcriptomic (mRNA) PODs are similar to fetal apical endpoint PODs. Sprague-Dawley rats were exposed from gestation day (GD) 6-21 to 0, 0.063, 0.2, 0.63, 2, 6.3, 20, or 40 mg/kg/day ketoconazole. Dam systemic, liver, and placenta PODs, along with GD 21 fetal resorption, body weight, and skeletal apical PODs were derived using BMDS software. GD 21 dam liver and placenta miRNA and mRNA PODs were obtained using three methods: a novel individual molecule POD accumulation method, a first mode method, and a gene set method. Dam apical POD values ranged from 2.0 to 38.6 mg/kg/day; the lowest value was for placenta histopathology. Fetal apical POD values were 10.9-20.3 mg/kg/day; the lowest value was for fetal resorption. Dam liver miRNA and mRNA POD values were 0.34-0.69 mg/kg/day, and placenta miRNA and mRNA POD values were 2.53-6.83 mg/kg/day. Epigenomic and transcriptomic POD values were similar across liver and placenta. Deriving a molecular POD from dam liver or placenta was protective of a fetal apical POD. These data support the conclusion that a molecular POD can be used to estimate, or be protective of, a developmental toxicity apical POD.
Collapse
Affiliation(s)
| | | | - Valerie Marshall
- Labcorp Early Development Laboratories, Inc., Greenfield, Indiana, USA
| | | | | | | | | |
Collapse
|
11
|
Desforges JP, Legrand E, Boulager E, Liu P, Xia J, Butler H, Chandramouli B, Ewald J, Basu N, Hecker M, Head J, Crump D. Using Transcriptomics and Metabolomics to Understand Species Differences in Sensitivity to Chlorpyrifos in Japanese Quail and Double-Crested Cormorant Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3019-3033. [PMID: 34293216 DOI: 10.1002/etc.5174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Modern 21st-century toxicity testing makes use of omics technologies to address critical questions in toxicology and chemical management. Of interest are questions relating to chemical mechanisms of toxicity, differences in species sensitivity, and translation of molecular effects to observable apical endpoints. Our study addressed these questions by comparing apical outcomes and multiple omics responses in early-life stage exposure studies with Japanese quail (Coturnix japonica) and double-crested cormorant (Phalacrocorax auritus), representing a model and ecological species, respectively. Specifically, we investigated the dose-dependent response of apical outcomes as well as transcriptomics and metabolomics in the liver of each species exposed to chlorpyrifos, a widely used organophosphate pesticide. Our results revealed a clear pattern of dose-dependent disruption of gene expression and metabolic profiles in Japanese quail but not double-crested cormorant at similar chlorpyrifos exposure concentrations. The difference in sensitivity between species was likely due to higher metabolic transformation of chlorpyrifos in Japanese quail compared to double-crested cormorant. The most impacted biological pathways after chlorpyrifos exposure in Japanese quail included hepatic metabolism, oxidative stress, endocrine disruption (steroid and nonsteroid hormones), and metabolic disease (lipid and fatty acid metabolism). Importantly, we show consistent responses across biological scales, suggesting that significant disruption at the level of gene expression and metabolite profiles leads to observable apical responses at the organism level. Our study demonstrates the utility of evaluating effects at multiple biological levels of organization to understand how modern toxicity testing relates to outcomes of regulatory relevance, while also highlighting important, yet poorly understood, species differences in sensitivity to chemical exposure. Environ Toxicol Chem 2021;40:3019-3033. © 2021 SETAC.
Collapse
Affiliation(s)
- Jean-Pierre Desforges
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Elena Legrand
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Emily Boulager
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Peng Liu
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | | | - Jessica Ewald
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Markus Hecker
- Toxicology Centre and School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jessica Head
- Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|