1
|
Miar S, Gonzales G, Dion G, Ong JL, Malka R, Bizios R, Branski RC, Guda T. Electrospun composite-coated endotracheal tubes with controlled siRNA and drug delivery to lubricate and minimize upper airway injury. Biomaterials 2024; 309:122602. [PMID: 38768544 DOI: 10.1016/j.biomaterials.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Endotracheal Tubes (ETTs) maintain and secure a patent airway; however, prolonged intubation often results in unintended injury to the mucosal epithelium and inflammatory sequelae which complicate recovery. ETT design and materials used have yet to adapt to address intubation associated complications. In this study, a composite coating of electrospun polycaprolactone (PCL) fibers embedded in a four-arm polyethylene glycol acrylate matrix (4APEGA) is developed to transform the ETT from a mechanical device to a dual-purpose device capable of delivering multiple therapeutics while preserving coating integrity. Further, the composite coating system (PCL-4APEGA) is capable of sustained delivery of dexamethasone from the PCL phase and small interfering RNA (siRNA) containing polyplexes from the 4APEGA phase. The siRNA is released rapidly and targets smad3 for immediate reduction in pro-fibrotic transforming growth factor-beta 1 (TGFϐ1) signaling in the upper airway mucosa as well as suppressing long-term sequelae in inflammation from prolonged intubation. A bioreactor was used to study mucosal adhesion to the composite PCL-4APEGA coated ETTs and investigate continued mucus secretory function in ex vivo epithelial samples. The addition of the 4APEGA coating and siRNA delivery to the dexamethasone delivery was then evaluated in a swine model of intubation injury and observed to restore mechanical function of the vocal folds and maintain epithelial thickness when observed over 14 days of intubation. This study demonstrated that increase in surface lubrication paired with surface stiffness reduction significantly decreased fibrotic behavior while reducing epithelial adhesion and abrasion.
Collapse
Affiliation(s)
- Solaleh Miar
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Civil, Environmental, and Biomedical Engineering, University of Hartford, West Hartford, CT, USA.
| | - Gabriela Gonzales
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Gregory Dion
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joo L Ong
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ronit Malka
- Department of Otolaryngology - Head and Neck Surgery, Brooke Army Medical Center, JBSA, Fort Sam Houston, TX, 78234, USA.
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ryan C Branski
- Departments of Rehabilitation Medicine and Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA.
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Perumalsamy H, Xiao X, Kim HY, Yoon TH. scRNA-seq analysis discovered suppression of immunomodulatory dependent inflammatory response in PMBCs exposed to silver nanoparticles. J Nanobiotechnology 2024; 22:118. [PMID: 38494495 PMCID: PMC10946150 DOI: 10.1186/s12951-024-02364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
The assessment of AgNPs toxicity in vitro and in vivo models are frequently conflicting and inaccurate. Nevertheless, single cell immunological responses in a heterogenous environment have received little attention. Therefore, in this study, we have performed in-depth analysis which clearly revealed cellular-metal ion association as well as specific immunological response. Our study didn't show significant population differences in PMBC between control and AgNPs group implying no toxicological response. To confirm it further, deep profiling identified differences in subsets and differentially expressed genes (DEGs) of monocytes, B cells and T cells. Notably, monocyte subsets showed significant upregulation of metallothionein (MT) gene expression such as MT1G, MT1X, MT1E, MT1A, and MT1F. On the other hand, downregulation of pro-inflammatory genes such as IL1β and CCL3 in both CD16 + and CD16- monocyte subsets were observed. This result indicated that AgNPs association with monocyte subsets de-promoted inflammatory responsive genes suggesting no significant toxicity observed in AgNPs treated group. Other cell types such as B cells and T cells also showed negligible differences in their subsets suggesting no toxicity response. Further, AgNPs treated group showed upregulation of cell proliferation, ribosomal synthesis, downregulation of cytokine release, and T cell differentiation inhibition. Overall, our results conclude that treatment of AgNPs to PMBC cells didn't display immunological related cytotoxicity response and thus motivate researchers to use them actively for biomedical applications.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Xiao Xiao
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Yi Kim
- NGeneS Inc, 362, Gwangdeok 1-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15495, Republic of Korea
| | - Tae-Hyun Yoon
- Institute of Next Generation Material Design, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
da Silva ACG, de Mendonça ICF, Valadares MC. Characterization and applicability of a novel physiologically relevant 3D-tetraculture bronchial model for in vitro assessment of respiratory sensitization. Toxicology 2024; 503:153756. [PMID: 38369009 DOI: 10.1016/j.tox.2024.153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Chemical Respiratory Allergy (CRA) is triggered after exposure to Low Molecular Weight (LMW) sensitizers and manifests clinically as asthma and rhinitis. From a risk/toxicity assessment point of view, there are few methods, none of them validated, for evaluating the respiratory sensitization potential of chemicals once the in vivo-based models usually employed for inhalation toxicity addressment do not comprise allergenicity endpoints specifically. Based on that, we developed, characterized, and evaluated the applicability of a 3D-tetraculture airway model reconstructed with bronchial epithelial, fibroblasts, endothelial and monocytic cell lines. Moreover, we exposed the tissue to maleic anhydride (MA) aerosols to challenge the model and subsequently assessed inflammatory and functional aspects of the tissue. The reconstructed tissue presented phenotypic biomarkers compatible with human bronchial epithelium, and MA aerosol exposure triggered an increased IL-8 and IL-6 production, reactive oxygen species (ROS) formation, and apoptosis of epithelial cells. Besides, augmented IL-8 production by monocytic cells was also found, correlating with dendritic cell activation within the co-culture model after MA exposure. Our results demonstrated that the 3D-tetraculture bronchial model presents hallmarks related to human airways' structure and function. Additionally, exposure to a respiratory sensitizer induced inflammatory and functional alterations in the reconstructed tissue, rendering it a valuable tool for exploring the mechanistic framework of chemically induced respiratory sensitization.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|