1
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
2
|
Jambor T, Knizatova N, Greifova H, Kovacik A, Lukac N. Toxicity of bisphenol A and its replacements in the mice Leydig cells in vitro. Physiol Res 2023; 72:71-86. [PMID: 36545881 PMCID: PMC10069807 DOI: 10.33549/physiolres.934989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
The aim of the study was to examine the potential impacts of bisphenol A (BPA) and its analogues BPB, BPF, and BPS on mice TM3 Leydig cells, with respect to basal cell viability parameters such as metabolic activity, cell membrane integrity, and lysosomal activity after 48-h exposure. In addition, monitoring of potential bisphenol´s actions included evaluation of ROS production and gap junctional intercellular communication (GJIC) complemented by determination of testosterone secretion. Obtained results revealed significant inhibition in mitochondrial activity started at 10 microg/ml of bisphenols after 48-h exposure. Cell membrane integrity was significantly decreased at 5 microg/ml of BPA and BPF and 10, 25, and 50 microg/ml of BPA and BPS. The lysosomal activity was significantly affected at 10, 25, and 50 microg/ml of applied bisphenols. A significant overproduction of ROS was recorded mainly at 5 and 10 microg/ml of tested compounds. In addition, significant inhibition of GJIC was observed at 5 microg/ml of BPB followed by a progressive decline at higher applied doses. In the case of testosterone production, a significant decline was confirmed at 10, 25 and 50 microg/ml.
Collapse
Affiliation(s)
- T Jambor
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | |
Collapse
|
3
|
Li X, Gao X, Li A, Xu S, Zhou Q, Zhang L, Pan Y, Shi W, Song M, Shi P. Comparative cytotoxicity, endocrine-disrupting effects, oxidative stress of halophenolic disinfection byproducts and the underlying molecular mechanisms revealed by transcriptome analysis. WATER RESEARCH 2023; 229:119458. [PMID: 36516492 DOI: 10.1016/j.watres.2022.119458] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Halophenolic disinfection byproducts (DBPs) are a class of emerging pollutants whose adverse effects on human cells and the underlying molecular mechanisms still need further exploration. In this study, we found that when halophenolic DBPs were substituted with the same halogen, the more substitution sites, the more cytotoxic, while when they were substituted at the same sites, the most toxic chemical was iodophenols, followed by bromophenols and chlorophenols. In addition, several of them exerted significant endocrine-disrupting effects at sublethal concentrations. 2,4,6-triiodophenol (TIP) and 2,4-dichlorophenol (2,4-DCP) showed the highest estradiol equivalent factor (EEF) of 4.41 × 10-8 and flutamide equivalent factor (FEF) of 0.4, respectively. Furthermore, all of the halophenolic DBPs except for 2-chlorophenol (2-CP) and 2-bromophenol (2-BP) significantly increased the levels of reactive oxygen species (ROS) or 8-hydroxydeoxyguanosine (8-OHdG) in HepG2 cells. The lowest cytotoxicity and unchanged ROS and 8-OHdG levels after 2-CP exposure may result from the activation of the transporters of the adenosine triphosphate (ATP) binding cassette in cells. Transcriptome analysis revealed distinct grouping patterns of 2-CP, 2,6-dibromophenol (2,6-DBP), and TIP at the concentrations of EC20, and the top differentially expressed genes (DEGs) were involved in the antioxidant-, immune-, and endocrine-associated systems. The weighted gene correlation network analysis well connected the phenotypes (EC50, EEF, FEF, ROS, 8-OHdG, and ABC transporters) with the DEGs and revealed that the MAPK signaling pathway played a vital role in regulating the biological response after exposure to halophenolic DBPs. This study provides deep insights into the underlying mechanisms of the toxic effects induced by halophenolic DBPs.
Collapse
Affiliation(s)
- Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xinran Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shuhui Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| | - Lulu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
4
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
5
|
Jambor T, Zajickova T, Arvay J, Ivanisova E, Tirdilova I, Knizatova N, Greifova H, Kovacik A, Galova E, Lukac N. Exceptional Properties of Lepidium sativum L. Extract and Its Impact on Cell Viability, Ros Production, Steroidogenesis, and Intracellular Communication in Mice Leydig Cells In Vitro. Molecules 2022; 27:5127. [PMID: 36014360 PMCID: PMC9412889 DOI: 10.3390/molecules27165127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of reproductive dysfunction in males has risen in the last few years, and alternative therapies are gradually gaining in popularity. Our in vitro study aimed to evaluate the potential impact of Lepidium sativum L. on mice TM3 Leydig cells, concerning basal parameters such as cell viability, cell membrane integrity, and lysosomal activity, after 24 h and 48 h exposure. Moreover, reactive oxygens species generation, sex-steroid hormone secretion, and intercellular communication were quantified. In the present study, the microgreen extract from Lepidium was rich in ferulic acid, 4-OH benzoic acid, and resveratrol, with a significant antioxidant activity. The results showed that lower experimental doses (62.5-250 µg/mL) could positively affect the observed parameters, with significant differences at 250 µg/mL after 24 h and 48 h, respectively. Potential risks could be associated with higher concentrations, starting at 500 µg/mL, 1000 µg/mL, and 2000 µg/mL of Lepidium. Nevertheless, biochemical quantification indicated a significant antioxidant potential and a rich content of biologically active molecules at the applied doses, and time determined the intracellular response of the cultured model.
Collapse
Affiliation(s)
- Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Terezia Zajickova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Julius Arvay
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eva Ivanisova
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Ivana Tirdilova
- AgroBioTech Research Centre, Department of Food Technology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knizatova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|