1
|
Purchal MK, Eyler DE, Tardu M, Franco MK, Korn MM, Khan T, McNassor R, Giles R, Lev K, Sharma H, Monroe J, Mallik L, Koutmos M, Koutmou KS. Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures. Proc Natl Acad Sci U S A 2022; 119:e2109708119. [PMID: 35058356 PMCID: PMC8794802 DOI: 10.1073/pnas.2109708119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudouridine (Ψ) is a ubiquitous RNA modification incorporated by pseudouridine synthase (Pus) enzymes into hundreds of noncoding and protein-coding RNA substrates. Here, we determined the contributions of substrate structure and protein sequence to binding and catalysis by pseudouridine synthase 7 (Pus7), one of the principal messenger RNA (mRNA) modifying enzymes. Pus7 is distinct among the eukaryotic Pus proteins because it modifies a wider variety of substrates and shares limited homology with other Pus family members. We solved the crystal structure of Saccharomyces cerevisiae Pus7, detailing the architecture of the eukaryotic-specific insertions thought to be responsible for the expanded substrate scope of Pus7. Additionally, we identified an insertion domain in the protein that fine-tunes Pus7 activity both in vitro and in cells. These data demonstrate that Pus7 preferentially binds substrates possessing the previously identified UGUAR (R = purine) consensus sequence and that RNA secondary structure is not a strong requirement for Pus7-binding. In contrast, the rate constants and extent of Ψ incorporation are more influenced by RNA structure, with Pus7 modifying UGUAR sequences in less-structured contexts more efficiently both in vitro and in cells. Although less-structured substrates were preferred, Pus7 fully modified every transfer RNA, mRNA, and nonnatural RNA containing the consensus recognition sequence that we tested. Our findings suggest that Pus7 is a promiscuous enzyme and lead us to propose that factors beyond inherent enzyme properties (e.g., enzyme localization, RNA structure, and competition with other RNA-binding proteins) largely dictate Pus7 substrate selection.
Collapse
Affiliation(s)
- Meredith K Purchal
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel E Eyler
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Mehmet Tardu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Monika K Franco
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Megan M Korn
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Taslima Khan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ryan McNassor
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Rachel Giles
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Katherine Lev
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Hari Sharma
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Jeremy Monroe
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Leena Mallik
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Markos Koutmos
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109;
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109;
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Guegueniat J, Halabelian L, Zeng H, Dong A, Li Y, Wu H, Arrowsmith CH, Kothe U. The human pseudouridine synthase PUS7 recognizes RNA with an extended multi-domain binding surface. Nucleic Acids Res 2021; 49:11810-11822. [PMID: 34718722 PMCID: PMC8599909 DOI: 10.1093/nar/gkab934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
The human pseudouridine synthase PUS7 is a versatile RNA modification enzyme targeting many RNAs thereby playing a critical role in development and brain function. Whereas all target RNAs of PUS7 share a consensus sequence, additional recognition elements are likely required, and the structural basis for RNA binding by PUS7 is unknown. Here, we characterize the structure–function relationship of human PUS7 reporting its X-ray crystal structure at 2.26 Å resolution. Compared to its bacterial homolog, human PUS7 possesses two additional subdomains, and structural modeling studies suggest that these subdomains contribute to tRNA recognition through increased interactions along the tRNA substrate. Consistent with our modeling, we find that all structural elements of tRNA are required for productive interaction with PUS7 as the consensus sequence of target RNA alone is not sufficient for pseudouridylation by human PUS7. Moreover, PUS7 binds several, non-modifiable RNAs with medium affinity which likely enables PUS7 to screen for productive RNA substrates. Following tRNA modification, the product tRNA has a significantly lower affinity for PUS7 facilitating its dissociation. Taken together our studies suggest a combination of structure-specific and sequence-specific RNA recognition by PUS7 and provide mechanistic insight into its function.
Collapse
Affiliation(s)
- Julia Guegueniat
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, AB, T1K 3M4, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Hong Wu
- Protein Technologies Center, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, AB, T1K 3M4, Canada.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
3
|
Hong H, Samborskyy M, Zhou Y, Leadlay PF. C-Nucleoside Formation in the Biosynthesis of the Antifungal Malayamycin A. Cell Chem Biol 2019; 26:493-501.e5. [DOI: 10.1016/j.chembiol.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023]
|
4
|
Adachi H, De Zoysa MD, Yu YT. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:230-239. [PMID: 30414851 DOI: 10.1016/j.bbagrm.2018.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023]
Abstract
Pseudouridylation is a post-transcriptional isomerization reaction that converts a uridine to a pseudouridine (Ψ) within an RNA chain. Ψ has chemical properties that are distinct from that of uridine and any other known nucleotides. Experimental data accumulated thus far have indicated that Ψ is present in many different types of RNAs, including coding and noncoding RNAs. Ψ is particularly concentrated in rRNA and spliceosomal snRNAs, and plays an important role in protein translation and pre-mRNA splicing, respectively. Ψ has also been found in mRNA, but its function there remains essentially unknown. In this review, we discuss the mechanisms and functions of RNA pseudouridylation, focusing on rRNA, snRNA and mRNA. We also discuss the methods, which have been developed to detect Ψs in RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Hironori Adachi
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Meemanage D De Zoysa
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yi-Tao Yu
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
5
|
Zhao Y, Dunker W, Yu YT, Karijolich J. The Role of Noncoding RNA Pseudouridylation in Nuclear Gene Expression Events. Front Bioeng Biotechnol 2018; 6:8. [PMID: 29473035 PMCID: PMC5809436 DOI: 10.3389/fbioe.2018.00008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudouridine is the most abundant internal RNA modification in stable noncoding RNAs (ncRNAs). It can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Pseudouridylation impacts both the biochemical and biophysical properties of RNAs and thus influences RNA-mediated cellular processes. The investigation of nuclear-ncRNA pseudouridylation has demonstrated that it is critical for the proper control of multiple stages of gene expression regulation. Here, we review how nuclear-ncRNA pseudouridylation contributes to transcriptional regulation and pre-mRNA splicing.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| |
Collapse
|
6
|
Abstract
All types of nucleic acids in cells undergo naturally occurring chemical modifications, including DNA, rRNA, mRNA, snRNA, and most prominently tRNA. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified [1]. In tRNA, the function of modifications varies; some modulate global and/or local RNA structure, and others directly impact decoding and may be essential for viability. Whichever the case, the overall importance of modifications is highlighted by both their evolutionary conservation and the fact that organisms use a substantial portion of their genomes to encode modification enzymes, far exceeding what is needed for the de novo synthesis of the canonical nucleotides themselves [2]. Although some modifications occur at exactly the same nucleotide position in tRNAs from the three domains of life, many can be found at various positions in a particular tRNA and their location may vary between and within different tRNAs. With this wild array of chemical diversity and substrate specificities, one of the big challenges in the tRNA modification field has been to better understand at a molecular level the modes of substrate recognition by the different modification enzymes; in this realm RNA binding rests at the heart of the problem. This chapter will focus on several examples of modification enzymes where their mode of RNA binding is well understood; from these, we will try to draw general conclusions and highlight growing themes that may be applicable to the RNA modification field at large.
Collapse
|
7
|
Abstract
Understanding regulation of mitochondrial DNA (mtDNA) expression is of considerable interest given that mitochondrial dysfunction is important in human pathology and aging. Similar to the situation in bacteria, there is no compartmentalization between transcription and translation in mitochondria; hence, both processes are likely to have a direct molecular crosstalk. Accumulating evidence suggests that there are important mechanisms for regulation of mammalian mtDNA expression at the posttranscriptional level. Regulation of mRNA maturation, mRNA stability, translational coordination, ribosomal biogenesis, and translation itself all form the basis for controlling oxidative phosphorylation capacity. Consequently, a wide variety of inherited human mitochondrial diseases are caused by mutations of nuclear genes regulating various aspects of mitochondrial translation. Furthermore, mutations of mtDNA, associated with human disease and aging, often affect tRNA genes critical for mitochondrial translation. Recent advances in molecular understanding of mitochondrial translation regulation will most likely provide novel avenues for modulating mitochondrial function for treating human disease.
Collapse
Affiliation(s)
- B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology, DESY Campus, 22603 Hamburg, Germany; European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany.
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 509 31 Cologne, Germany; Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
8
|
Abstract
A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".
Collapse
Affiliation(s)
- Ross D King
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | |
Collapse
|
9
|
Huet T, Miannay FA, Patton JR, Thore S. Steroid receptor RNA activator (SRA) modification by the human pseudouridine synthase 1 (hPus1p): RNA binding, activity, and atomic model. PLoS One 2014; 9:e94610. [PMID: 24722331 PMCID: PMC3983220 DOI: 10.1371/journal.pone.0094610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/18/2014] [Indexed: 11/23/2022] Open
Abstract
The most abundant of the modified nucleosides, and once considered as the “fifth” nucleotide in RNA, is pseudouridine, which results from the action of pseudouridine synthases. Recently, the mammalian pseudouridine synthase 1 (hPus1p) has been reported to modulate class I and class II nuclear receptor responses through its ability to modify the Steroid receptor RNA Activator (SRA). These findings highlight a new level of regulation in nuclear receptor (NR)-mediated transcriptional responses. We have characterised the RNA association and activity of the human Pus1p enzyme with its unusual SRA substrate. We validate that the minimal RNA fragment within SRA, named H7, is necessary for both the association and modification by hPus1p. Furthermore, we have determined the crystal structure of the catalytic domain of hPus1p at 2.0 Å resolution, alone and in a complex with several molecules present during crystallisation. This model shows an extended C-terminal helix specifically found in the eukaryotic protein, which may prevent the enzyme from forming a homodimer, both in the crystal lattice and in solution. Our biochemical and structural data help to understand the hPus1p active site architecture, and detail its particular requirements with regard to one of its nuclear substrates, the non-coding RNA SRA.
Collapse
Affiliation(s)
- Tiphaine Huet
- Department of Molecular Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | | | - Jeffrey R. Patton
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, United States of America
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, Sciences III, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Friedt J, Leavens FMV, Mercier E, Wieden HJ, Kothe U. An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation. Nucleic Acids Res 2014; 42:3857-70. [PMID: 24371284 PMCID: PMC3973310 DOI: 10.1093/nar/gkt1331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 11/12/2022] Open
Abstract
Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB's catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism.
Collapse
Affiliation(s)
- Jenna Friedt
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Fern M. V. Leavens
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Evan Mercier
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| |
Collapse
|
11
|
Kamalampeta R, Keffer-Wilkes LC, Kothe U. tRNA binding, positioning, and modification by the pseudouridine synthase Pus10. J Mol Biol 2013; 425:3863-74. [PMID: 23743107 DOI: 10.1016/j.jmb.2013.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Pus10 is the most recently identified pseudouridine synthase found in archaea and higher eukaryotes. It modifies uridine 55 in the TΨC arm of tRNAs. Here, we report the first quantitative biochemical analysis of tRNA binding and pseudouridine formation by Pyrococcus furiosus Pus10. The affinity of Pus10 for both substrate and product tRNA is high (Kd of 30nM), and product formation occurs with a Km of 400nM and a kcat of 0.9s(-1). Site-directed mutagenesis was used to demonstrate that the thumb loop in the catalytic domain is important for efficient catalysis; we propose that the thumb loop positions the tRNA within the active site. Furthermore, a new catalytic arginine residue was identified (arginine 208), which is likely responsible for triggering flipping of the target uridine into the active site of Pus10. Lastly, our data support the proposal that the THUMP-containing domain, found in the N-terminus of Pus10, contributes to binding of tRNA. Together, our findings are consistent with the hypothesis that tRNA binding by Pus10 occurs through an induced-fit mechanism, which is a prerequisite for efficient pseudouridine formation.
Collapse
Affiliation(s)
- Rajashekhar Kamalampeta
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| | | | | |
Collapse
|
12
|
Wright JR, Keffer-Wilkes LC, Dobing SR, Kothe U. Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis. RNA (NEW YORK, N.Y.) 2011; 17:2074-84. [PMID: 21998096 PMCID: PMC3222121 DOI: 10.1261/rna.2905811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/29/2011] [Indexed: 05/20/2023]
Abstract
Pseudouridine synthases catalyze formation of the most abundant modification of functional RNAs by site-specifically isomerizing uridines to pseudouridines. While the structure and substrate specificity of these enzymes have been studied in detail, the kinetic and the catalytic mechanism of pseudouridine synthases remain unknown. Here, the first pre-steady-state kinetic analysis of three Escherichia coli pseudouridine synthases is presented. A novel stopped-flow absorbance assay revealed that substrate tRNA binding by TruB takes place in two steps with an overall rate of 6 sec(-1). In order to observe catalysis of pseudouridine formation directly, the traditional tritium release assay was adapted for the quench-flow technique, allowing, for the first time, observation of a single round of pseudouridine formation. Thereby, the single-round rate constant of pseudouridylation (k(Ψ)) by TruB was determined to be 0.5 sec(-1). This rate constant is similar to the k(cat) obtained under multiple-turnover conditions in steady-state experiments, indicating that catalysis is the rate-limiting step for TruB. In order to investigate if pseudouridine synthases are characterized by slow catalysis in general, the rapid kinetic quench-flow analysis was also performed with two other E. coli enzymes, RluA and TruA, which displayed rate constants of pseudouridine formation of 0.7 and 0.35 sec(-1), respectively. Hence, uniformly slow catalysis might be a general feature of pseudouridine synthases that share a conserved catalytic domain and supposedly use the same catalytic mechanism.
Collapse
Affiliation(s)
- Jaden R. Wright
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Laura C. Keffer-Wilkes
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Selina R. Dobing
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ute Kothe
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
- Corresponding author.E-mail .
| |
Collapse
|
13
|
Yu AT, Ge J, Yu YT. Pseudouridines in spliceosomal snRNAs. Protein Cell 2011; 2:712-25. [PMID: 21976061 PMCID: PMC4722041 DOI: 10.1007/s13238-011-1087-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/22/2011] [Indexed: 01/14/2023] Open
Abstract
Spliceosomal RNAs are a family of small nuclear RNAs (snRNAs) that are essential for pre-mRNA splicing. All vertebrate spliceosomal snRNAs are extensively pseudouridylated after transcription. Pseudouridines in spliceosomal snRNAs are generally clustered in regions that are functionally important during splicing. Many of these modified nucleotides are conserved across species lines. Recent studies have demonstrated that spliceosomal snRNA pseudouridylation is catalyzed by two different mechanisms: an RNA-dependent mechanism and an RNA-independent mechanism. The functions of the pseudouridines in spliceosomal snRNAs (U2 snRNA in particular) have also been extensively studied. Experimental data indicate that virtually all pseudouridines in U2 snRNA are functionally important. Besides the currently known pseudouridines (constitutive modifications), recent work has also indicated that pseudouridylation can be induced at novel positions under stress conditions, thus strongly suggesting that pseudouridylation is also a regulatory modification.
Collapse
Affiliation(s)
- Andrew T. Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Junhui Ge
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 China
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
14
|
Enzymatic characterization and mutational studies of TruD--the fifth family of pseudouridine synthases. Arch Biochem Biophys 2009; 489:15-9. [PMID: 19664587 DOI: 10.1016/j.abb.2009.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 11/24/2022]
Abstract
Pseudouridine (Psi) is formed through isomerization of uridine (U) catalyzed by a class of enzymes called pseudouridine synthases (PsiS). TruD is the fifth family of PsiS. Studies of the first four families (TruA, TruB, RsuA, and RluA) of PsiS reveal a conserved Asp and Tyr are critical for catalysis. However, in TruD family, the tyrosine is not conserved. In this study, we measured the enzymatic parameters for TruD in Escherichia coli, and carried out enzymatic assays for a series of single, double, and triple TruD mutants. Our studies indicate that a Glu, strictly conserved in only TruD family is likely to be the general base in TruD. We also proposed a possible distinct mechanism of TruD-catalyzed Psi formation compared to the first four families.
Collapse
|
15
|
Faure G, Bornot A, de Brevern AG. Analysis of protein contacts into Protein Units. Biochimie 2009; 91:876-87. [PMID: 19383526 DOI: 10.1016/j.biochi.2009.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 04/13/2009] [Indexed: 11/18/2022]
Abstract
Three-dimensional structures of proteins are the support of their biological functions. Their folds are maintained by inter-residue interactions which are one of the main focuses to understand the mechanisms of protein folding and stability. Furthermore, protein structures can be composed of single or multiple functional domains that can fold and function independently. Hence, dividing a protein into domains is useful for obtaining an accurate structure and function determination. In previous studies, we enlightened protein contact properties according to different definitions and developed a novel methodology named Protein Peeling. Within protein structures, Protein Peeling characterizes small successive compact units along the sequence called protein units (PUs). The cutting done by Protein Peeling maximizes the number of contacts within the PUs and minimizes the number of contacts between them. This method is so a relevant tool in the context of the protein folding research and particularly regarding the hierarchical model proposed by George Rose. Here, we accurately analyze the PUs at different levels of cutting, using a non-redundant protein databank. Distribution of PU sizes, number of PUs or their accessibility are screened to determine their common and different features. Moreover, we highlight the preferential amino acid interactions inside and between PUs. Our results show that PUs are clearly an intermediate level between secondary structures and protein structural domains.
Collapse
Affiliation(s)
- Guilhem Faure
- INSERM UMR-S 726, Equipe de Bioinformatique Génomique et Moléculaire (EBGM), DSIMB, Université Paris Diderot - Paris 7, case 7113, 2 place Jussieu, 75251 Paris, France
| | | | | |
Collapse
|
16
|
Urban A, Behm-Ansmant I, Branlant C, Motorin Y. RNA sequence and two-dimensional structure features required for efficient substrate modification by the Saccharomyces cerevisiae RNA:{Psi}-synthase Pus7p. J Biol Chem 2008; 284:5845-58. [PMID: 19114708 DOI: 10.1074/jbc.m807986200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA:pseudouridine (Psi) synthase Pus7p of Saccharomyces cerevisiae is a multisite-specific enzyme that is able to modify U(13) in several yeast tRNAs, U(35) in the pre-tRNA(Tyr) (GPsiA), U(35) in U2 small nuclear RNA, and U(50) in 5 S rRNA. Pus7p belongs to the universally conserved TruD-like family of RNA:Psi-synthases found in bacteria, archaea, and eukarya. Although several RNA substrates for yeast Pus7p have been identified, specificity of their recognition and modification has not been studied. However, conservation of a 7-nt-long sequence, including the modified U residue, in all natural Pus7p substrates suggested the importance of these nucleotides for Pus7p recognition and/or catalysis. Using site-directed mutagenesis, we designed a set of RNA variants derived from the yeast tRNA(Asp)(GUC), pre-tRNA(Tyr)(GPsiA), and U2 small nuclear RNA and tested their ability to be modified by Pus7p in vitro. We demonstrated that the highly conserved U(-2) and A(+1) residues (nucleotide numbers refer to target U(0)) are crucial identity elements for efficient modification by Pus7p. Nucleotide substitutions at other surrounding positions (-4, -3, +2, +3) have only a moderate effect. Surprisingly, the identity of the nucleotide immediately 5' to the target U(0) residue (position -1) is not important for efficient modification. Alteration of tRNA three-dimensional structure had no detectable effect on Pus7p activity at position 13. However, our results suggest that the presence of at least one stem-loop structure including or close to the target U nucleotide is required for Pus7p-catalyzed modification.
Collapse
Affiliation(s)
- Alan Urban
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567, CNRS-UHP Nancy I, Nancy Université, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | |
Collapse
|
17
|
Decatur WA, Schnare MN. Different mechanisms for pseudouridine formation in yeast 5S and 5.8S rRNAs. Mol Cell Biol 2008; 28:3089-100. [PMID: 18332121 PMCID: PMC2423156 DOI: 10.1128/mcb.01574-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/23/2007] [Accepted: 02/26/2008] [Indexed: 12/29/2022] Open
Abstract
The selection of sites for pseudouridylation in eukaryotic cytoplasmic rRNA occurs by the base pairing of the rRNA with specific guide sequences within the RNA components of box H/ACA small nucleolar ribonucleoproteins (snoRNPs). Forty-four of the 46 pseudouridines (Psis) in the cytoplasmic rRNA of Saccharomyces cerevisiae have been assigned to guide snoRNAs. Here, we examine the mechanism of Psi formation in 5S and 5.8S rRNA in which the unassigned Psis occur. We show that while the formation of the Psi in 5.8S rRNA is associated with snoRNP activity, the pseudouridylation of 5S rRNA is not. The position of the Psi in 5.8S rRNA is guided by snoRNA snR43 by using conserved sequence elements that also function to guide pseudouridylation elsewhere in the large-subunit rRNA; an internal stem-loop that is not part of typical yeast snoRNAs also is conserved in snR43. The multisubstrate synthase Pus7 catalyzes the formation of the Psi in 5S rRNA at a site that conforms to the 7-nucleotide consensus sequence present in other substrates of Pus7. The different mechanisms involved in 5S and 5.8S rRNA pseudouridylation, as well as the multiple specificities of the individual trans factors concerned, suggest possible roles in linking ribosome production to other processes, such as splicing and tRNA synthesis.
Collapse
MESH Headings
- Ascomycota/genetics
- Ascomycota/metabolism
- Base Sequence
- DNA Primers/genetics
- Gene Deletion
- Genes, Fungal
- Genetic Complementation Test
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Homology, Nucleic Acid
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Wayne A Decatur
- Department of Biochemistry and Molecular Biology, 903 Lederle Graduate Research Tower, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
18
|
Matte A, Jia Z, Sunita S, Sivaraman J, Cygler M. Insights into the biology of Escherichia coli through structural proteomics. ACTA ACUST UNITED AC 2007; 8:45-55. [PMID: 17668295 DOI: 10.1007/s10969-007-9019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli has historically been an important organism for understanding a multitude of biological processes, and represents a model system as we attempt to simulate the workings of living cells. Many E. coli strains are also important human and animal pathogens for which new therapeutic strategies are required. For both reasons, a more complete and comprehensive understanding of the protein structure complement of E. coli is needed at the genome level. Here, we provide examples of insights into the mechanism and function of bacterial proteins that we have gained through the Bacterial Structural Genomics Initiative (BSGI), focused on medium-throughput structure determination of proteins from E. coli. We describe the structural characterization of several enzymes from the histidine biosynthetic pathway, the structures of three pseudouridine synthases, enzymes that synthesize one of the most abundant modified bases in RNA, as well as the combined use of protein structure and focused functional analysis to decipher functions for hypothetical proteins. Together, these results illustrate the power of structural genomics to contribute to a deeper biological understanding of bacterial processes.
Collapse
Affiliation(s)
- Allan Matte
- Biotechnology Research Institute, National Research Council Canada, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
19
|
Hamma T, Ferré-D'Amaré AR. Pseudouridine synthases. ACTA ACUST UNITED AC 2007; 13:1125-35. [PMID: 17113994 DOI: 10.1016/j.chembiol.2006.09.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/15/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.
Collapse
Affiliation(s)
- Tomoko Hamma
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | |
Collapse
|
20
|
Pan H, Ho JD, Stroud RM, Finer-Moore J. The crystal structure of E. coli rRNA pseudouridine synthase RluE. J Mol Biol 2007; 367:1459-70. [PMID: 17320904 PMCID: PMC1876706 DOI: 10.1016/j.jmb.2007.01.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/23/2007] [Accepted: 01/31/2007] [Indexed: 01/03/2023]
Abstract
Pseudouridine synthase RluE modifies U2457 in a stem of 23 S RNA in Escherichia coli. This modification is located in the peptidyl transferase center of the ribosome. We determined the crystal structures of the C-terminal, catalytic domain of E. coli RluE at 1.2 A resolution and of full-length RluE at 1.6 A resolution. The crystals of the full-length enzyme contain two molecules in the asymmetric unit and in both molecules the N-terminal domain is disordered. The protein has an active site cleft, conserved in all other pseudouridine synthases, that contains invariant Asp and Tyr residues implicated in catalysis. An electropositive surface patch that covers the active site cleft is just wide enough to accommodate an RNA stem. The RNA substrate stem can be docked to this surface such that the catalytic Asp is adjacent to the target base, and a conserved Arg is positioned to help flip the target base out of the stem into the enzyme active site. A flexible RluE specific loop lies close to the conserved region of the stem in the model, and may contribute to substrate specificity. The stem alone is not a good RluE substrate, suggesting RluE makes additional interactions with other regions in the ribosome.
Collapse
Affiliation(s)
| | | | | | - Janet Finer-Moore
- *Address correspondence to: Janet Finer-Moore (), S412B UCSF-GENENTECH HALL, 600 16th Street, San Francisco, California 94143-2240, Tel: 415 502-5426, Fax: 415 476 1902
| |
Collapse
|
21
|
Hoang C, Chen J, Vizthum CA, Kandel JM, Hamilton CS, Mueller EG, Ferré-D'Amaré AR. Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure. Mol Cell 2007; 24:535-45. [PMID: 17188032 DOI: 10.1016/j.molcel.2006.09.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 09/04/2006] [Accepted: 09/22/2006] [Indexed: 11/25/2022]
Abstract
RluA is a dual-specificity enzyme responsible for pseudouridylating 23S rRNA and several tRNAs. The 2.05 A resolution structure of RluA bound to a substrate RNA comprising the anticodon stem loop of tRNA(Phe) reveals that enzyme binding induces a dramatic reorganization of the RNA. Instead of adopting its canonical U turn conformation, the anticodon loop folds into a new structure with a reverse-Hoogsteen base pair and three flipped-out nucleotides. Sequence conservation, the cocrystal structure, and the results of structure-guided mutagenesis suggest that RluA recognizes its substrates indirectly by probing RNA loops for their ability to adopt the reorganized fold. The planar, cationic side chain of an arginine intercalates between the reverse-Hoogsteen base pair and the bottom pair of the anticodon stem, flipping the nucleotide to be modified into the active site of RluA. Sequence and structural comparisons suggest that pseudouridine synthases of the RluA, RsuA, and TruA families employ an equivalent arginine for base flipping.
Collapse
Affiliation(s)
- Charmaine Hoang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hamilton CS, Greco TM, Vizthum CA, Ginter JM, Johnston MV, Mueller EG. Mechanistic investigations of the pseudouridine synthase RluA using RNA containing 5-fluorouridine. Biochemistry 2006; 45:12029-38. [PMID: 17002302 PMCID: PMC2580076 DOI: 10.1021/bi061293x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pseuoduridine synthases (psi synthases) isomerize uridine (U) to pseudouridine (psi) in RNA, and they fall into five families that share very limited sequence similarity but have the same overall fold and active-site architecture, including an essential Asp. The mechanism by which the psi synthases operate remains unknown, and mechanistic work has largely made use of RNA containing 5-fluorouridine (f5U) in place of U. The psi synthase TruA forms a covalent adduct with such RNA, and heat disruption of the adduct generates a hydrated product of f5U, which was reasonably concluded to result from the hydrolysis of an ester linkage between the essential Asp and f5U. In contrast, the psi synthase TruB, which is a member of a different family, does not form an adduct with f5U in RNA but catalyzes the rearrangement and hydration of the f5U, which labeling studies with [18O]water showed does not result from ester hydrolysis. To extend the line of mechanistic investigation to another family of psi synthases and an enzyme that makes an adduct with f5U in RNA, the behavior of RluA toward RNA containing f5U was examined. Stem-loop RNAs are shown to be good substrates for RluA. Heat denaturation of the adduct between RluA and RNA containing f5U produces a hydrated nucleoside product, and labeling studies show that hydration does not occur by ester hydrolysis. These results are interpreted in light of a consistent mechanistic scheme for the handling of f5U by psi synthases.
Collapse
Affiliation(s)
- Christopher S Hamilton
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hur S, Stroud RM, Finer-Moore J. Substrate recognition by RNA 5-methyluridine methyltransferases and pseudouridine synthases: a structural perspective. J Biol Chem 2006; 281:38969-73. [PMID: 17085441 DOI: 10.1074/jbc.r600034200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sun Hur
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
24
|
Sunita S, Zhenxing H, Swaathi J, Cygler M, Matte A, Sivaraman J. Domain Organization and Crystal Structure of the Catalytic Domain of E.coli RluF, a Pseudouridine Synthase that Acts on 23S rRNA. J Mol Biol 2006; 359:998-1009. [PMID: 16712869 DOI: 10.1016/j.jmb.2006.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/27/2006] [Accepted: 04/05/2006] [Indexed: 11/21/2022]
Abstract
Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine (Psi) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E.coli RluF at 2.6A resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. The structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of Psi-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.
Collapse
Affiliation(s)
- S Sunita
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|
25
|
Phannachet K, Elias Y, Huang RH. Dissecting the roles of a strictly conserved tyrosine in substrate recognition and catalysis by pseudouridine 55 synthase. Biochemistry 2006; 44:15488-94. [PMID: 16300397 DOI: 10.1021/bi050961w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequence alignment of the TruA, TruB, RsuA, and RluA families of pseudouridine synthases (PsiS) identifies a strictly conserved aspartic acid, which has been shown to be the critical nucleophile for the PsiS-catalyzed formation of pseudouridine (Psi). However, superposition of the representative structures from these four families of enzymes identifies two additional amino acids, a lysine or an arginine (K/R) and a tyrosine (Y), from a K/RxY motif that are structurally conserved in the active site. We have created a series of Thermotoga maritima and Escherichia coli pseudouridine 55 synthase (Psi55S) mutants in which the conserved Y is mutated to other amino acids. A new crystal structure of the T. maritima Psi55S Y67F mutant in complex with a 5FU-RNA at 2.4 A resolution revealed formation of 5-fluoro-6-hydroxypseudouridine (5FhPsi), the same product previously seen in wild-type Psi55S-5FU-RNA complex structures. HPLC analysis confirmed efficient formation of 5FhPsi by both Psi55S Y67F and Y67L mutants but to a much lesser extent by the Y67A mutant when 5FU-RNA substrate was used. However, both HPLC analysis and a tritium release assay indicated that these mutants had no detectable enzymatic activity when the natural RNA substrate was used. The combined structural and mutational studies lead us to propose that the side chain of the conserved tyrosine in these four families of PsiS plays a dual role within the active site, maintaining the structural integrity of the active site through its hydrophobic phenyl ring and acting as a general base through its OH group for the proton abstraction required in the last step of PsiS-catalyzed formation of Psi.
Collapse
Affiliation(s)
- Kulwadee Phannachet
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
26
|
Hoang C, Hamilton CS, Mueller EG, Ferré-D'Amaré AR. Precursor complex structure of pseudouridine synthase TruB suggests coupling of active site perturbations to an RNA-sequestering peripheral protein domain. Protein Sci 2005; 14:2201-6. [PMID: 15987897 PMCID: PMC2279332 DOI: 10.1110/ps.051493605] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The pseudouridine synthase TruB is responsible for the universally conserved post-transcriptional modification of residue 55 of elongator tRNAs. In addition to the active site, the "thumb", a peripheral domain unique to the TruB family of enzymes, makes extensive interactions with the substrate. To coordinate RNA binding and release with catalysis, the thumb may be able to sense progress of the reaction in the active site. To establish whether there is a structural correlate of communication between the active site and the RNA-sequestering thumb, we have solved the structure of a catalytically inactive point mutant of TruB in complex with a substrate RNA, and compared it to the previously determined structure of an active TruB bound to a reaction product. Superposition of the two structures shows that they are extremely similar, except in the active site and, intriguingly, in the relative position of the thumb. Because the two structures were solved using isomorphous crystals, and because the thumb is very well ordered in both structures, the displacement of the thumb we observe likely reflects preferential propagation of active site perturbations to this RNA-binding domain. One of the interactions between the active site and the thumb involves an active site residue whose hydrogen-bonding status changes during the reaction. This may allow the peripheral RNA-binding domain to monitor progress of the pseudouridylation reaction.
Collapse
Affiliation(s)
- Charmaine Hoang
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
27
|
Hamilton CS, Spedaliere CJ, Ginter JM, Johnston MV, Mueller EG. The roles of the essential Asp-48 and highly conserved His-43 elucidated by the pH dependence of the pseudouridine synthase TruB. Arch Biochem Biophys 2005; 433:322-34. [PMID: 15581587 DOI: 10.1016/j.abb.2004.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/05/2004] [Indexed: 11/30/2022]
Abstract
All known pseudouridine synthases have a conserved aspartic acid residue that is essential for catalysis, Asp-48 in Escherichia coli TruB. To probe the role of this residue, inactive D48C TruB was oxidized to generate the sulfinic acid cognate of aspartic acid. The oxidation restored significant but reduced catalytic activity, consistent with the proposed roles of Asp-48 as a nucleophile and general base. The family of pseudouridine synthases including TruB also has a nearly invariant histidine residue, His-43 in the E. coli enzyme. To examine the role of this conserved residue, site-directed mutagenesis was used to generate H43Q, H43N, H43A, H43G, and H43F TruB. Except for phenylalanine, the substitutions seriously impaired the enzyme, but all of the altered TruB retained significant activity. To examine the roles of Asp-48 and His-43 more fully, the pH dependences of wild-type, oxidized D48C, and H43A TruB were determined. The wild-type enzyme displays a typical bell-shaped profile. With oxidized D48C TruB, logk(cat) varies linearly with pH, suggesting the participation of specific rather than general base catalysis. Substitution of His-43 perturbs the pH profile, but it remains bell-shaped. The ascending limb of the pH profile is assigned to Asp-48, and the descending limb is tentatively ascribed to an active site tyrosine residue, the bound substrate uridine, or the bound product pseudouridine.
Collapse
|
28
|
Spedaliere CJ, Ginter JM, Johnston MV, Mueller EG. The Pseudouridine Synthases: Revisiting a Mechanism That Seemed Settled. J Am Chem Soc 2004; 126:12758-9. [PMID: 15469254 DOI: 10.1021/ja046375s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.
Collapse
|