1
|
Adding Some "Splice" to Stress Eating: Autophagy, ESCRT and Alternative Splicing Orchestrate the Cellular Stress Response. Genes (Basel) 2021; 12:genes12081196. [PMID: 34440370 PMCID: PMC8393842 DOI: 10.3390/genes12081196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a widely studied self-renewal pathway that is essential for degrading damaged cellular organelles or recycling biomolecules to maintain cellular homeostasis, particularly under cellular stress. This pathway initiates with formation of an autophagosome, which is a double-membrane structure that envelopes cytosolic components and fuses with a lysosome to facilitate degradation of the contents. The endosomal sorting complexes required for transport (ESCRT) proteins play an integral role in controlling autophagosome fusion events and disruption to this machinery leads to autophagosome accumulation. Given the central role of autophagy in maintaining cellular health, it is unsurprising that dysfunction of this process is associated with many human maladies including cancer and neurodegenerative diseases. The cell can also rapidly respond to cellular stress through alternative pre-mRNA splicing that enables adaptive changes to the cell's proteome in response to stress. Thus, alternative pre-mRNA splicing of genes that are involved in autophagy adds another layer of complexity to the cell's stress response. Consequently, the dysregulation of alternative splicing of genes associated with autophagy and ESCRT may also precipitate disease states by either reducing the ability of the cell to respond to stress or triggering a maladaptive response that is pathogenic. In this review, we summarize the diverse roles of the ESCRT machinery and alternative splicing in regulating autophagy and how their dysfunction can have implications for human disease.
Collapse
|
2
|
Abstract
Permeabilization of the outer mitochondrial membrane that leads to the release of cytochrome c and several other apoptogenic proteins from mitochondria into cytosol represents a commitment point of apoptotic pathway in mammalian cells. This crucial event is governed by proteins of the Bcl-2 family. Molecular mechanisms, by which Bcl-2 family proteins permeabilize mitochondrial membrane, remain under dispute. Although yeast does not have apparent homologues of these proteins, when mammalian members of Bcl-2 family are expressed in yeast, they retain their activity, making yeast an attractive model system, in which to study their action. This review focuses on using yeast expressing mammalian proteins of the Bcl-2 family as a tool to investigate mechanisms, by which these proteins permeabilize mitochondrial membranes, mechanisms, by which pro- and antiapoptotic members of this family interact, and involvement of other cellular components in the regulation of programmed cell death by Bcl-2 family proteins.
Collapse
Affiliation(s)
- Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Petra Jaká
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
3
|
McElhanon KE, Bose C, Sharma R, Wu L, Awasthi YC, Singh SP. Gsta4 Null Mouse Embryonic Fibroblasts Exhibit Enhanced Sensitivity to Oxidants: Role of 4-Hydroxynonenal in Oxidant Toxicity. ACTA ACUST UNITED AC 2013; 2. [PMID: 24353929 DOI: 10.4236/ojapo.2013.21001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The alpha class glutathione s-transferase (GST) isozyme GSTA4-4 (EC2.5.1.18) exhibits high catalytic efficiency to-wards 4-hydroxynon-2-enal (4-HNE), a major end product of oxidative stress induced lipid peroxidation. Exposure of cells and tissues to heat, radiation, and chemicals has been shown to induce oxidative stress resulting in elevated concentrations of 4-HNE that can be detrimental to cell survival. Alternatively, at physiological levels 4-HNE acts as a signaling molecule conveying the occurrence of oxidative events initiating the activation of adaptive pathways. To examine the impact of oxidative/electrophilic stress in a model with impaired 4-HNE metabolizing capability, we disrupted the Gsta4 gene that encodes GSTA4-4 in mice. The effect of electrophile and oxidants on embryonic fibroblasts (MEF) isolated from wild type (WT) and Gsta4 null mice were examined. Results indicate that in the absence of GSTA4-4, oxidant-induced toxicity is potentiated and correlates with elevated accumulation of 4-HNE adducts and DNA damage. Treatment of Gsta4 null MEF with 1,1,4-tris(acetyloxy)-2(E)-nonene [4-HNE(Ac)3], a pro-drug form of 4-HNE, resulted in the activation and phosphorylation of the c-jun-N-terminal kinase (JNK), extracellular-signal-regulated kinases (ERK 1/2) and p38 mitogen activated protein kinases (p38 MAPK) accompanied by enhanced cleavage of caspase-3. Interestingly, when recombinant mammalian or invertebrate GSTs were delivered to Gsta4 null MEF, activation of stress-related kinases in 4-HNE(Ac)3 treated Gsta4 null MEF were inversely correlated with the catalytic efficiency of delivered GSTs towards 4-HNE. Our data suggest that GSTA4-4 plays a major role in protecting cells from the toxic effects of oxidant chemicals by attenuating the accumulation of 4-HNE.
Collapse
Affiliation(s)
- Kevin E McElhanon
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA ; Central Arkansas Veterans Healthcare System, Little Rock, USA
| | - Chhanda Bose
- Central Arkansas Veterans Healthcare System, Little Rock, USA ; Department of Internal Medicine, Nephrology Division, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Rajendra Sharma
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA ; Central Arkansas Veterans Healthcare System, Little Rock, USA
| | - Liping Wu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA ; Central Arkansas Veterans Healthcare System, Little Rock, USA
| | - Yogesh C Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, USA
| | - Sharda P Singh
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA ; Central Arkansas Veterans Healthcare System, Little Rock, USA
| |
Collapse
|
4
|
The pleiotropic effects of heterologous Bax expression in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1449-65. [DOI: 10.1016/j.bbamcr.2007.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/14/2007] [Accepted: 12/30/2007] [Indexed: 12/27/2022]
|
5
|
Odat O, Matta S, Khalil H, Kampranis SC, Pfau R, Tsichlis PN, Makris AM. Old yellow enzymes, highly homologous FMN oxidoreductases with modulating roles in oxidative stress and programmed cell death in yeast. J Biol Chem 2007; 282:36010-23. [PMID: 17897954 DOI: 10.1074/jbc.m704058200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H(2)O(2)-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Delta oye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H(2)O(2)-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H(2)O(2)-induced PCD in wild type cells, but accelerate PCD in Delta oye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Delta oye2 oye3) is highly resistant to H(2)O(2)-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H(2)O(2)-induced cell death: in Delta oye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.
Collapse
Affiliation(s)
- Osama Odat
- Department of Natural Products, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | | | | | | | | | | | | |
Collapse
|
6
|
Khoury CM, Yang Z, Ismail S, Greenwood MT. Characterization of a novel alternatively spliced human transcript encoding an N-terminally truncated Vps24 protein that suppresses the effects of Bax in an ESCRT independent manner in yeast. Gene 2007; 391:233-41. [PMID: 17331679 DOI: 10.1016/j.gene.2006.12.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/19/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Elucidating novel anti-apoptotic regulatory pathways is central to further understanding the molecular basis of several pathologies, including cancer. We have previously reported the identification of several mammalian cDNAs effective in preventing the lethal effects of heterologous expression of a pro-apoptotic BAX cDNA in yeast [Yang, Z., Khoury, C., Jean-Baptiste, G., Greenwood, M.T., 2006. Identification of mouse sphingomyelin synthase 1 (SMS1) as a suppressor of Bax mediated cell death in yeast. FEMS Yeast Res. 6, 751-762]. Here we report that one of the Bax suppressors encodes a novel 156 amino acid variant of the human Vps24 protein, Vps24beta, that lacks the N-terminal lipid binding domain of the well characterized 222 residue Vps24 (Vps24alpha). We demonstrate that the VPS24beta cDNA represents an expressed transcript that is likely produced by alternative splicing of the human VPS24 gene. Vps24alpha, but not Vps24beta, prevented the temperature and salt sensitive growth defects observed in a yeast mutant lacking a functional VPS24 gene. In contrast, Vps24beta, but not Vps24alpha, suppressed the inhibitory effects of Bax on yeast growth. Vps24beta protein also suppressed the effects of Bax in mutants lacking other VPS genes suggesting that a functional ESCRT pathway, of which the yeast Vps24p is an essential component, is not required for Vps24beta function. Taken together, we demonstrate that the human VPS24 gene gives rise to two functionally distinct proteins, one of which is involved in the ESCRT pathway and another novel protein that serves an anti-apoptotic role.
Collapse
Affiliation(s)
- Chamel M Khoury
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | | | | | |
Collapse
|
7
|
Abstract
Mitochondria are not only important for the energetic status of the cell, but are also the fatal organelles deciding about cellular life and death. Complex mitochondrial features decisive for cell death execution in mammals are present and functional in yeast: AIF and cytochrome c release to the cytosol, mitochondrial fragmentation as well as mitochondrial hyperpolarisation followed by an oxidative burst, and breakdown of mitochondrial membrane potential. The easy accessibility of mitochondrial manipulations such as repression of respiration by growing yeast on glucose or deletion of mitochondrial DNA (rho(0)) on the one hand and the unique ability of yeast cells to grow on non-fermentable carbon sources by switching on mitochondrial respiration on the other hand have made yeast an excellent tool to delineate the necessity for mitochondria in cell death execution. Yeast research indicates that the connection between mitochondria and apoptosis is intricate, as abrogation of mitochondrial function can be either deleterious or beneficial for the cell depending on the specific context of the death scenario. Surprisingly, mitochondrion dependent yeast apoptosis currently helps to understand the aetiology (or the complex biology) of lethal cytoskeletal alterations, ageing and neurodegeneration. For example, mutation of mitochondrial superoxide dismutase or CDC48/VCP mutations, both implicated in several neurodegenerative disorders, are associated with mitochondrial impairment and apoptosis in yeast.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Institute of Molecular Biosciences, Universitätsplatz 2, University of Graz, 8010 Graz, Austria
| | | | | | | |
Collapse
|
8
|
Bounhar Y, Mann KK, Roucou X, LeBlanc AC. Prion protein prevents Bax-mediated cell death in the absence of other Bcl-2 family members inSaccharomyces cerevisiae. FEMS Yeast Res 2006; 6:1204-12. [PMID: 17156017 DOI: 10.1111/j.1567-1364.2006.00122.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although there is no consensus regarding the normal function of the prion protein, increasing evidence points towards a role in cellular protection against cell death. We have previously shown that prion protein is a potent inhibitor of Bax-induced apoptosis in human primary neurons and in the breast carcinoma MCF-7 cells. Here, we used the yeast Saccharomyces cerevisiae to investigate if the neuroprotective function of prion protein requires other members of the Bcl-2 family given that S. cerevisiae lacks Bcl-2 genes but undergoes a mitochondrial-dependent apoptotic cell death upon exogenous expression of Bax protein. We show that Bax induces cell death and growth inhibition in S. cerevisiae. Prion protein prevents Bax-mediated cell death. Prion protein overcomes Bax-mediated growth arrest in S phase but cannot overcome population growth inhibition because the cells then accumulate in G(2)/M phase. We conclude that prion protein does not require other Bcl-2 family proteins to protect against Bax-mediated cell death.
Collapse
Affiliation(s)
- Younes Bounhar
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
9
|
Kissová I, Plamondon LT, Brisson L, Priault M, Renouf V, Schaeffer J, Camougrand N, Manon S. Evaluation of the Roles of Apoptosis, Autophagy, and Mitophagy in the Loss of Plating Efficiency Induced by Bax Expression in Yeast. J Biol Chem 2006; 281:36187-97. [PMID: 16990272 DOI: 10.1074/jbc.m607444200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found recently that, in yeast cells, the heterologous expression of Bax induces a loss of plating efficiency different from that induced by acute stress because it is associated with the maintenance of plasma membrane integrity (Camougrand, N., Grelaud-Coq, A., Marza, E., Priault, M., Bessoule, J. J., and Manon, S. (2003) Mol. Microbiol. 47, 495-506). Bax effects were neither dependent on the presence of the yeast metacaspase Yca1p and the apoptosis-inducing factor homolog nor associated with the appearance of typical apoptotic markers such as metacaspase activation, annexin V binding, and DNA cleavage. Yeast cells expressing Bax instead displayed autophagic features, including increased accumulation of Atg8p, activation of vacuolar alkaline phosphatase, and the presence of autophagosomes and autophagic bodies. However, the inactivation of autophagy did not prevent and actually slightly accelerated Bax-induced loss of plating efficiency. On the other hand, Bax expression induced a fragmentation of the mitochondrial network, which retained, however, some level of organization in wild-type cells. However, when expressed in cells inactivated for the gene UTH1, previously shown to be involved in mitophagy, Bax induced a complete disorganization of the mitochondrial network. Interestingly, although mitochondrially targeted green fluorescent protein was slowly degraded in the wild-type strain, it remained unaffected in the mutant. Furthermore, the slow loss of plating efficiency in the mutant strain correlated with a loss of plasma membrane integrity. These data suggest that Bax-induced loss of growth capacity is associated with maintenance of plasma membrane integrity dependent on UTH1, suggesting that selective degradation of altered mitochondria is required for a regulated loss of growth capacity.
Collapse
Affiliation(s)
- Ingrid Kissová
- UMR5095 CNRS/Université de Bordeaux 2, 1 Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang Z, Khoury C, Jean-Baptiste G, Greenwood MT. Identification of mouse sphingomyelin synthase 1 as a suppressor of Bax-mediated cell death in yeast. FEMS Yeast Res 2006; 6:751-62. [PMID: 16879426 DOI: 10.1111/j.1567-1364.2006.00052.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We have identified mouse sphingomyelin synthase 1 as a novel suppressor of the growth inhibitory effect of heterologously expressed Bax. Yeast cells expressing sphingomyelin synthase 1 were also found to show an increased resistance to a variety of cytotoxic stimuli including hydrogen peroxide, osmotic stress and elevated temperature. Sphingomyelin synthase 1 functions by catalyzing the conversion of ceramide and phosphatidylcholine to sphingomyelin and diacylglycerol. Ceramide is an antiproliferative and proapoptotic sphingolipid whose level increases in response to a variety of stresses. Consistent with its biochemical function, yeast cells expressing sphingomyelin synthase 1 have an enhanced ability to grow in media containing the cell-permeable C2-ceramide analog as well as the ceramide precursor phytosphingosine. We also show that overexpression of AUR1, a potential yeast functional homolog of sphingomyelin synthase, also protects cells from osmotic stress. Taken together, these results suggest that sphingomyelin synthase 1 likely prevents cell death by counteracting stress-mediated accumulation of endogenous sphingolipids.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
11
|
Kawai-Yamada M, Saito Y, Jin L, Ogawa T, Kim KM, Yu LH, Tone Y, Hirata A, Umeda M, Uchimiya H. A Novel Arabidopsis Gene Causes Bax-like Lethality in Saccharomyces cerevisiae. J Biol Chem 2005; 280:39468-73. [PMID: 16192270 DOI: 10.1074/jbc.m509632200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Overexpression of the mammalian proapoptotic protein Bax induces cell death in plant and yeast cells. The Bax inihibitor-1 (BI-1) gene rescues yeast and plant from Bax-mediated lethality. Using the Arabidopsis BI-1 (AtBI-1) gene controlled by the GAL1 promoter as a cell death suppressor in yeast, Cdf1 (cell growth defect factor-1) was isolated from Arabidopsis cDNA library. Overexpression of Cdf1 caused cell death in yeast, whereas such an effect was suppressed by co-expression of AtBI-1. The Cdf1 protein fused with a green fluorescent protein was localized in the mitochondria and resulted in the loss of mitochondrial membrane potential in yeast. The Bax-resistant mutant BRM1 demonstrated tolerance against Cdf1-mediated lethality, whereas the Deltaatp4 strain was sensitive to Cdf1. Our results suggest that Cdf1 and Bax cause mitochondria-mediated yeast lethality through partially overlapped pathways.
Collapse
Affiliation(s)
- Maki Kawai-Yamada
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yoshinaga K, Arimura SI, Hirata A, Niwa Y, Yun DJ, Tsutsumi N, Uchimiya H, Kawai-Yamada M. Mammalian Bax initiates plant cell death through organelle destruction. PLANT CELL REPORTS 2005; 24:408-17. [PMID: 15815928 DOI: 10.1007/s00299-005-0948-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 05/22/2023]
Abstract
Mammalian Bax is known to cause cell death when expressed in plants. We examined transgenic plants expressing both Bax and organelle-targeted green fluorescent protein to determine the cellular changes that occur during Bax-induced cell death. The mitochondria changed morphologically from being bacilli-shaped to being round, eventually becoming swollen. Mitochondria streaming also stopped. The chloroplasts lost membrane function and their contents leaked out, followed by the disruption of the vacuole. Light was not essential for Bax-induced ion leakage or organelle disruption. These results indicate that Bax induces temporal and spatial cell death events at the organelle level in the plant. A heterologous system, using Bax, would therefore be available to investigate cell death, which is commonly conserved in animals and plants.
Collapse
Affiliation(s)
- Keiko Yoshinaga
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 13-0032, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2004; 21:1233-40. [PMID: 15580707 DOI: 10.1002/yea.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|