1
|
Silva HKTDA, Barbosa TM, Santos MCD, Silva LG, de Lima LAS, Morais CLM, Bicudo TC, Gama RA, de Lima KMG. Near infrared spectroscopy (NIRS) coupled with chemometric methods to identify and estimate taxonomic relationships of flies with forensic potential (Diptera: Calliphoridae and Sarcophagidae). Acta Trop 2022; 235:106672. [PMID: 36041495 DOI: 10.1016/j.actatropica.2022.106672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 11/01/2022]
Abstract
Infrared spectroscopy has been gaining prominence in entomology, such as for solving taxonomic problems, sexing adult specimens, determining the age of immature specimens, detecting drugs of abuse in fly larvae, and can be an important technique in Forensic Entomology. In order to help identify the species of Calliphoridae and Sarcophagidae families, the present study aimed to evaluate the use of near infrared spectroscopy (NIRS) coupled with chemometric methods for separating fly specimens into taxonomic categories and understanding the taxonomic relationship between them. Spectra collected from nine species of flies were subjected to unsupervised principal component analysis (PCA) and hierarchical cluster analysis (HCA), in which we sought to visualize the relationship between the samples (segregation of genera and families) with subsequent identification. In PCA, the best model was achieved using five principal components (PCs), which explained 99.16% of total variance of the original data set. The first principal component (PC1) and the fourth principal component (PC4) provided the best segregation, the latter being more important in the segregation of the species Chrysomya albiceps, Lucilia eximia, and Ravinia belforti from the others. In the HCA dendrogram, there was a clear separation between the specimens by family (Calliphoridae and Sarcophagidae) and genera (Chrysomya, Lucilia, Oxysarcodexia, Peckia and Ravinia). This study shows that NIRS is efficient to identify flies' taxonomic properties, such as family and genera, providing quick evidence for the tested species identity.
Collapse
Affiliation(s)
- Hellyda K T de Andrade Silva
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Taciano M Barbosa
- Laboratório de Insetos e Vetores, Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Marfran C D Santos
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil.; Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano - Campus Floresta, Floresta 56400-000, Brasil
| | - Lidiane G Silva
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Leomir A S de Lima
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Camilo L M Morais
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Tatiana C Bicudo
- Escola de Ciências e Tecnologia, Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Renata A Gama
- Laboratório de Insetos e Vetores, Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Kássio M G de Lima
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil..
| |
Collapse
|
2
|
Highly Efficient Use of Infrared Spectroscopy (ATR-FTIR) to Identify Aphid Species. BIOLOGY 2022; 11:biology11081232. [PMID: 36009859 PMCID: PMC9404783 DOI: 10.3390/biology11081232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Aphids are commonly considered to be serious pests for trees, herbaceous and cultivated plants. Recognition and identification of individual species is very difficult and is based mainly on morphological features. The aims of the study were to suggest the possibility of identifying aphids through the use of Fourier-transform infrared (FTIR) spectroscopy, and to determine which absorption peaks are the most useful to separate aphid species. Using FTIR spectroscopy, based on the chemical composition of the body, we were able to distinguish 12 species of aphid. We have shown that using nine distinct peaks corresponding to the molecular vibrations from carbohydrates, lipids, amides I and II, it is possible to accurately identify aphid species with an efficiency of 98%.
Collapse
|
3
|
Han Y, Jian L, Yao Y, Wang X, Han L, Liu X. Insight into Rapid DNA-Specific Identification of Animal Origin Based on FTIR Analysis: A Case Study. Molecules 2018; 23:molecules23112842. [PMID: 30388819 PMCID: PMC6278494 DOI: 10.3390/molecules23112842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022] Open
Abstract
In this study, a methodology has been proposed to identify the origin of animal DNA, employing high throughput extension accessory Fourier transform infrared (HT-FTIR) spectroscopy coupled with chemometrics. Important discriminatory characteristics were identified in the FTIR spectral peaks of 51 standard DNA samples (25 from bovine and 26 from fish origins), including 1710, 1659, 1608, 1531, 1404, 1375, 1248, 1091, 1060, and 966 cm−1. In particular, the bands at 1708 and 1668 cm−1 were higher in fish DNA than in bovine DNA, while the reverse was true for the band at 1530 cm−1 was shown the opposite result. It was also found that the PO2− Vas/Vs ratio (1238/1094 cm−1) was significantly higher (p < 0.05) in bovine DNA than in fish DNA. These discriminatory characteristics were further revealed to be closely related to the base content and base sequences of different samples. Multivariate analyses, such as principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were conducted, and both the sensitivity and specificity values of PLS-DA model were one. This methodology has been further validated by 20 meat tissue samples (4 from bovine, 5 from ovine, 5 from porcine, and 6 from fish origins), and these were successfully differentiated. This case study demonstrated that FTIR spectroscopy coupled with PLS-DA discriminant model could provide a rapid, sensitive, and reliable approach for the identification of DNA of animal origin. This methodology could be widely applied in food, feed, forensic science, and archaeology studies.
Collapse
Affiliation(s)
- Yahong Han
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Lin Jian
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Yumei Yao
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xinlei Wang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Lujia Han
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xian Liu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Volpe MG, Costantini S, Coccia E, Parrillo L, Paolucci M. Evaluation of metabolic changes induced by polyphenols in the crayfish Astacus leptodactylus by metabolomics using Fourier transformed infrared spectroscopy. J Biosci 2018. [DOI: 10.1007/s12038-018-9774-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Gonzalez-Moragas L, Maurer LL, Harms VM, Meyer JN, Laromaine A, Roig A. Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans. MATERIALS HORIZONS 2017; 4:719-746. [PMID: 29057078 PMCID: PMC5648024 DOI: 10.1039/c7mh00166e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Understanding the in vivo fate and transport of nanoparticles (NPs) is challenging, but critical. We review recent studies of metal and metal oxide NPs using the model organism Caenorhabditis elegans, summarizing major findings to date. In a joint transdisciplinary effort, we highlight underutilized opportunities offered by powerful techniques lying at the intersection of mechanistic toxicology and materials science,. To this end, we firstly summarize the influence of exposure conditions (media, duration, C. elegans lifestage) and NP physicochemical properties (size, coating, composition) on the response of C. elegans to NP treatment. Next, we focus on the techniques employed to study NP entrance route, uptake, biodistribution and fate, emphasizing the potential of extending the toolkit available with novel and powerful techniques. Next, we review findings on several NP-induced biological responses, namely transport routes and altered molecular pathways, and illustrate the molecular biology and genetic strategies applied, critically reviewing their strengths and weaknesses. Finally, we advocate the incorporation of a set of minimal materials and toxicological science experiments that will permit meta-analysis and synthesis of multiple studies in the future. We believe this review will facilitate coordinated integration of both well-established and underutilized approaches in mechanistic toxicology and materials science by the nanomaterials research community.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| | - Laura L Maurer
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ 08801-3059, United States
| | - Victoria M Harms
- Nicholas School of the Environment and Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708-0328, United States
| | - Joel N Meyer
- Nicholas School of the Environment and Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708-0328, United States
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB. 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
6
|
Bouyanfif A, Liyanage S, Hewitt JE, Vanapalli SA, Moustaid-Moussa N, Hequet E, Abidi N. FTIR imaging detects diet and genotype-dependent chemical composition changes in wild type and mutant C. elegans strains. Analyst 2017; 142:4727-4736. [DOI: 10.1039/c7an01432e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FTlR detects differences in functional groups in different regions of C. elegans. Distribution of colors indicates changes in chemical composition.
Collapse
Affiliation(s)
- A. Bouyanfif
- Department of Plant and Soil Science
- Fiber and Biopolymer Research Inst
- USA
- Department of Nutritional Sciences
- USA
| | - S. Liyanage
- Department of Plant and Soil Science
- Fiber and Biopolymer Research Inst
- USA
- Obesity Research Cluster
- USA
| | - J. E. Hewitt
- Obesity Research Cluster
- USA
- Department of Chemical Engineering
- USA
| | - S. A. Vanapalli
- Obesity Research Cluster
- USA
- Department of Chemical Engineering
- USA
| | - N. Moustaid-Moussa
- Department of Plant and Soil Science
- Fiber and Biopolymer Research Inst
- USA
- Department of Nutritional Sciences
- USA
| | - E. Hequet
- Department of Plant and Soil Science
- Fiber and Biopolymer Research Inst
- USA
| | - N. Abidi
- Department of Plant and Soil Science
- Fiber and Biopolymer Research Inst
- USA
- Obesity Research Cluster
- USA
| |
Collapse
|
7
|
Sheng M, Gorzsás A, Tuck S. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms. WORM 2016; 5:e1132978. [PMID: 27073735 DOI: 10.1080/21624054.2015.1132978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.
Collapse
Affiliation(s)
- Ming Sheng
- Umeå Center for Molecular Medicine, Umeå University , Umeå, Sweden
| | | | - Simon Tuck
- Umeå Center for Molecular Medicine, Umeå University , Umeå, Sweden
| |
Collapse
|
8
|
Margenot AJ, Hodson AK. Relationships between labile soil organic matter and nematode communities in a California oak woodland. NEMATOLOGY 2016. [DOI: 10.1163/15685411-00003027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Labile soil organic matter (SOM) is an important energy source for below-ground ecosystems but the association of labile SOM and nematode communities is poorly characterised. In this study, soil nematode communities and nematode-derived indices of ecosystem function were characterised and related to SOM lability in an undisturbed riparian woodland (California, USA). SOM lability was assessed by microbial biomass C (MBC), permanganate-oxidisable C (POXC), extractable organic C (EOC), and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The channel index, which measures the ratio of bacterial-feeding to fungal-feeding nematodes in cp groups 1 and 2, respectively, decreased with labile C fractions and aliphatic C-H enrichment (infrared absorbance at 2920 cm−1) but increased with aromatic C=C enrichment (1620 cm−1) and index of decomposition (2930:1620 cm−1), as did the nematode structure index. These results indicate that nematode communities respond to variation in labile C fractions and SOM composition across a heterogeneous natural landscape, which may reflect observed differences in SOM lability among woody plant species.
Collapse
Affiliation(s)
- Andrew J. Margenot
- Department of Land, Air and Water Resources, University of California-Davis, Davis, CA 95616, USA
| | - Amanda K. Hodson
- Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:215-60. [DOI: 10.1007/978-3-319-20164-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Gonzalez-Moragas L, Roig A, Laromaine A. C. elegans as a tool for in vivo nanoparticle assessment. Adv Colloid Interface Sci 2015; 219:10-26. [PMID: 25772622 DOI: 10.1016/j.cis.2015.02.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022]
Abstract
Characterization of the in vivo behavior of nanomaterials aims to optimize their design, to determine their biological effects, and to validate their application. The characteristics of the model organism Caenorhabditis elegans (C. elegans) advocate this 1mm long nematode as an ideal living system for the primary screening of engineered nanoparticles in a standard synthetic laboratory. This review describes some practicalities and advantages of working with C. elegans that will be of interest for chemists and materials scientists who would like to enter the "worm" community, anticipates some drawbacks, and offers relevant examples of nanoparticle assessment by using C. elegans.
Collapse
Affiliation(s)
- L Gonzalez-Moragas
- Institut de Ciència de Materials de Barcelona, Campus UAB, 08193 Bellaterra, Spain
| | - A Roig
- Institut de Ciència de Materials de Barcelona, Campus UAB, 08193 Bellaterra, Spain
| | - A Laromaine
- Institut de Ciència de Materials de Barcelona, Campus UAB, 08193 Bellaterra, Spain.
| |
Collapse
|
11
|
Dynamics of uterine infections with Escherichia coli, Streptococcus uberis and Trueperella pyogenes in post-partum dairy cows and their association with clinical endometritis. Vet J 2014; 202:527-32. [DOI: 10.1016/j.tvjl.2014.08.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 11/17/2022]
|
12
|
Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 2014; 9:1771-91. [PMID: 24992094 PMCID: PMC4480339 DOI: 10.1038/nprot.2014.110] [Citation(s) in RCA: 1013] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing.
Collapse
Affiliation(s)
- Matthew J Baker
- 1] Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, UK. [2] Present address: WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Júlio Trevisan
- 1] Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK. [2] School of Computing and Communications, Lancaster University, Lancaster, UK
| | - Paul Bassan
- Manchester Institute of Biotechnology (MIB), University of Manchester, Manchester, UK
| | - Rohit Bhargava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Holly J Butler
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Konrad M Dorling
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, UK
| | - Peter R Fielden
- Department of Chemistry, Lancaster University, Lancaster, UK
| | - Simon W Fogarty
- 1] Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK. [2] Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK
| | - Nigel J Fullwood
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK
| | - Kelly A Heys
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Caryn Hughes
- Manchester Institute of Biotechnology (MIB), University of Manchester, Manchester, UK
| | - Peter Lasch
- Proteomics and Spectroscopy (ZBS 6), Robert-Koch-Institut, Berlin, Germany
| | - Pierre L Martin-Hirsch
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Blessing Obinaju
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Ganesh D Sockalingum
- Equipe MéDIAN-Biophotonique et Technologies pour la Santé, Université de Reims Champagne-Ardenne, UnitéMEDyC, CNRS UMR7369, UFR Pharmacie, SFR CAP-Santé FED4231, Reims, France
| | - Josep Sulé-Suso
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, UK
| | - Rebecca J Strong
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Michael J Walsh
- Department of Pathology, College of Medicine Research Building (COMRB), University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Peter Gardner
- Manchester Institute of Biotechnology (MIB), University of Manchester, Manchester, UK
| | - Francis L Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
13
|
Ami D, Di Segni M, Forcella M, Meraviglia V, Baccarin M, Doglia SM, Terzoli G. Role of water in chromosome spreading and swelling induced by acetic acid treatment: a FTIR spectroscopy study. Eur J Histochem 2014; 58:2330. [PMID: 24705001 PMCID: PMC3980214 DOI: 10.4081/ejh.2014.2330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/11/2013] [Accepted: 12/30/2013] [Indexed: 11/23/2022] Open
Abstract
The so called chromosome preparation is a procedure consisting of three strictly connected stages that enables to obtain chromosomes of quality suitable for cytogenetic analysis. Interestingly, experimental evidence strongly suggested that chromosome spreading and swelling (key processes that allow their counting and detailed structural analysis) are induced in the last fixative-evaporation stage by the interaction, mediated by acetic acid, between water from the environmental humidity, and the cytoplasmic matrix and the chromatin. However, since a considerable variation in the quality of chromosome preparations is observed, strongly depending on the environmental conditions in which the procedure takes place, a better comprehension of the mechanisms underlying chromosome preparation is required. To this aim, here we analysed intact lymphocytes before and at each stage of the chromosome preparation protocol by Fourier transform infrared (FTIR) spectroscopy, a technique widely used for the study not only of isolated biomolecules, but also of complex biological systems, such as whole cells. Interestingly, we found that the chromosome preparation protocol induces significant structural changes of cell proteins and DNA, in particular due to the interaction with acetic acid. Moreover, noteworthy, through the monitoring of changes in the water combination band between 2300 and 1800 cm–1, we provided evidence at molecular level of the crucial role of the bound water to the cytoplasmic matrix and to the chromatin in determining the chromosome spreading and swelling. Our FTIR results, therefore, underline the need to perform the last fixative-evaporation stage in standardized and optimized temperature and relative humidity conditions, thus providing chromosomes of high quality for the cytogenetic analysis that would lead in this way to more reliable results.
Collapse
Affiliation(s)
- D Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ami D, Posteri R, Mereghetti P, Porro D, Doglia SM, Branduardi P. Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:12. [PMID: 24450603 PMCID: PMC3923900 DOI: 10.1186/1754-6834-7-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/10/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND Oleaginous microorganisms, such as different yeast and algal species, can represent a sustainable alternative to plant oil for the production of biodiesel. They can accumulate fatty acids (FA) up to 70% of their dry weight with a predominance of (mono)unsaturated species, similarly to what plants do, but differently from animals. In addition, their growth is not in competition either with food, feed crops, or with agricultural land.Despite these advantages, the exploitation of the single cell oil system is still at an early developmental stage. Cultivation mode and conditions, as well as lipid extraction technologies, represent the main limitations. The monitoring of lipid accumulation in oleaginous microorganisms is consequently crucial to develop and validate new approaches, but at present the majority of the available techniques is time consuming, invasive and, when relying on lipid extraction, can be affected by FA degradation. RESULTS In this work the fatty acid accumulation of the oleaginous yeasts Cryptococcus curvatus and Rhodosporidium toruloides and of the non-oleaginous yeast Saccharomyces cerevisiae (as a negative control) was monitored in situ by Fourier Transform Infrared Spectroscopy (FTIR). Indeed, this spectroscopic tool can provide complementary information to those obtained by classical techniques, such as microscopy, flow cytometry and gas chromatography. As shown in this work, through the analysis of the absorption spectra of intact oleaginous microorganisms it is possible not only to monitor the progression of FA accumulation but also to identify the most represented classes of the produced lipids. CONCLUSIONS Here we propose FTIR microspectroscopy - supported by multivariate analysis - as a fast, reliable and non invasive method to monitor and analyze FA accumulation in intact oleaginous yeasts. The results obtained by the FTIR approach were in agreement with those obtained by the other classical methods like flow cytometry and gas chromatography. Moreover, the possibility to track lipid production in real time is highly desirable to support the initial screening of strains and media as well as to optimize the scaling up experiments, which are essential for a viable and successful development of an industrial production process.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, Milano 20126, Italy
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM) UdR Milano-Bicocca, Milano 20126, Italy
| | - Riccardo Posteri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Paolo Mereghetti
- Center for Nanotechnology Innovation @NEST, Italian Institute of Technology, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, Milano 20126, Italy
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM) UdR Milano-Bicocca, Milano 20126, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| |
Collapse
|
15
|
Guerra M, López MA, Estéves I, Zubillaga AL, Cróquer A. Fourier-transformed infrared spectroscopy: a tool to identify gross chemical changes from healthy to yellow band disease tissues. DISEASES OF AQUATIC ORGANISMS 2014; 107:249-258. [PMID: 24429476 DOI: 10.3354/dao02680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Yellow band disease (YBD) is a common and wide-spread Caribbean syndrome that affects the genus Orbicella, a group of species that constitute the framework of Caribbean coral reefs. Previous studies have shown that the structure and function of bacterial assemblages vary between healthy tissues and YBD lesions; however, how the molecular composition of tissues varies as tissues transition from healthy to YBD has not been determined before. The present study provides the first survey of macromolecules found from healthy (H), apparently healthy (AH), transition (TR) and YBD tissues of Orbicella faveolata. For this, we used Fourier-transformed mid-infrared spectroscopy (FTIR) to compare absorption profiles as a proxy for the gross molecular composition of decalcified H, AH and YBD tissues. We found a significantly higher level of infrared absorption for bands assigned to lipids in H tissues compared to YBD tissues, suggesting that lipid compounds are more abundant in compromised tissues in relation to other macromolecules. We also found a lower level of intensity of bands assigned to carbohydrates and proteins in YBD tissues, compared to H and AH tissues. A similar pattern was observed for phospholipidic compounds in relation to fatty acids. This study is the first to show that healthy and YBD-compromised tissues have different infrared absorption profiles, suggesting that alterations in the biochemical composition occur during pathogenesis. Future studies should focus on determining the actual concentration of these compounds in H, AH, TR and YBD tissues and on testing the role of translocation of photoassimilates from H tissues and/or from endolithic algae to YBD tissues.
Collapse
Affiliation(s)
- Mayamarú Guerra
- Unidad de Tecnología Laser y Optoelectrónica and Unidad de Geoquímica, Instituto Zuliano de Investigaciones Tecnológicas, Km 15 Carretera Via a La Cañada, Maracaibo 4001, Venezuela
| | | | | | | | | |
Collapse
|
16
|
Zanni E, De Bellis G, Bracciale MP, Broggi A, Santarelli ML, Sarto MS, Palleschi C, Uccelletti D. Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. NANO LETTERS 2012; 12:2740-2744. [PMID: 22612766 DOI: 10.1021/nl204388p] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We evaluated the toxicity of graphite nanoplatelets (GNPs) in the model organism Caenorhabditis elegans. The GNPs resulted nontoxic by measuring longevity as well as reproductive capability end points. An imaging technique based on Fourier transform infrared spectroscopy (FT-IR) mapping was also developed to analyze the GNPs spatial distribution inside the nematodes. Conflicting reports on the in vitro antimicrobial properties of graphene-based nanomaterials prompted us to challenge the host-pathogen system C. elegans-Pseudomonas aeruginosa to assess these findings through an in vivo model.
Collapse
Affiliation(s)
- Elena Zanni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ami D, Natalello A, Doglia SM. Fourier transform infrared microspectroscopy of complex biological systems: from intact cells to whole organisms. Methods Mol Biol 2012; 895:85-100. [PMID: 22760314 DOI: 10.1007/978-1-61779-927-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) microspectroscopy is a powerful tool for the study of complex biological systems. Indeed, it is employed to characterize intact cells, tissues, and whole model organisms such as nematodes, since it allows to obtain a chemical fingerprint of the sample under investigation, giving information on the molecular composition and structures. The successful application of this technique for the in situ study of biological processes requires specific sample preparations, in order to obtain reliable and reproducible results. In the present work, we illustrate the optimized procedures to prepare biological samples for IR measurements and the method to collect and analyze their FTIR spectra. In particular, we describe here the investigations on bacterial cells, intact eukaryotic cells, and whole intact nematode specimens.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
18
|
A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation. PLoS One 2011; 6:e18789. [PMID: 21533208 PMCID: PMC3076451 DOI: 10.1371/journal.pone.0018789] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/18/2011] [Indexed: 11/19/2022] Open
Abstract
The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed two additional bands at 1604 and 1656 cm−1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry.
Collapse
|
19
|
Ami D, Mereghetti P, Natalello A, Doglia SM, Zanoni M, Redi CA, Monti M. FTIR spectral signatures of mouse antral oocytes: molecular markers of oocyte maturation and developmental competence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1220-9. [PMID: 21435359 DOI: 10.1016/j.bbamcr.2011.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Mammalian antral oocytes with a Hoescht-positive DNA ring around the nucleolus (SN) are able to resume meiosis and to fully support the embryonic development, while oocytes with a non-surrounded nucleolus (NSN) cannot. Here, we applied FTIR microspectroscopy to characterize single SN and NSN mouse oocytes in order to try to elucidate some aspects of the mechanisms behind the different chromatin organization that impairs the full development of NSN oocyte-derived embryos. To this aim, oocytes were measured at three different stages of their maturation: just after isolation and classification as SN and NSN oocytes (time 0); after 10h of in vitro maturation, i.e. at the completion of the metaphase I (time 1); and after 20h of in vitro maturation, i.e. at the completion of the metaphase II (time 2). Significant spectral differences in the lipid (3050-2800cm(-1)) and protein (1700-1600cm(-1)) absorption regions were found between the two types of oocytes and among the different stages of maturation within the same oocyte type. Moreover, dramatic changes in nucleic acid content, concerning mainly the extent of transcription and polyadenylation, were detected in particular between 1000 and 800cm(-1). The use of the multivariate principal component-linear discriminant analysis (PCA-LDA) enabled us to identify the maturation stage in which the separation between the two types of oocytes took place, finding as the most discriminating wavenumbers those associated to transcriptional activity and polyadenylation, in agreement with the visual analysis of the spectral data.
Collapse
Affiliation(s)
- Diletta Ami
- Fondazione IRCCS Policlinico San Matteo, V.le C. Golgi 19, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Marcelli A, Cinque G. Infrared Synchrotron Radiation Beamlines: High Brilliance Tools for IR Spectromicroscopy. BIOMEDICAL APPLICATIONS OF SYNCHROTRON INFRARED MICROSPECTROSCOPY 2010. [DOI: 10.1039/9781849731997-00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Augusto Marcelli
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati Via Enrico Fermi 40, I-00044 Frascati Italy
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus Chilton Didcot Oxon OX11 ODE UK
| |
Collapse
|
21
|
Diomede L, Cassata G, Fiordaliso F, Salio M, Ami D, Natalello A, Doglia SM, De Luigi A, Salmona M. Tetracycline and its analogues protect Caenorhabditis elegans from β amyloid-induced toxicity by targeting oligomers. Neurobiol Dis 2010; 40:424-31. [PMID: 20637283 DOI: 10.1016/j.nbd.2010.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 02/01/2023] Open
Abstract
The accumulation and deposition of amyloid beta (Aβ) peptide in extracellular dense plaques in the brain is a key phase in Alzheimer's disease (AD). Small oligomeric forms of Aβ are responsible for the toxicity and the early cognitive impairment observed in patients before the amyloid plaque deposits appear. It is essential for the development of an efficient cure for AD to identify compounds that interfere with Aβ aggregation, counteracting the molecular mechanisms involved in conversion of the monomeric amyloid protein into oligomeric and fibrillar forms. Tetracyclines have been proposed for AD therapy, although their effects on the aggregation of Aβ protein, particularly their ability to interact in vivo with the Aβ oligomers and/or aggregates, remain to be understood. Using transgenic Caenorhabditis elegans as a simplified invertebrate model of AD, we evaluated the ability of tetracyclines to interfere with the sequence of events leading to Aβ proteotoxicity. The drugs directly interact with the Aβ assemblies in vivo and reduce Aβ oligomer deposition, protecting C. elegans from oxidative stress and the onset of the paralysis phenotype. These effects were specific, dose-related and not linked to any antibiotic activity, suggesting that the drugs might offer an effective therapeutic strategy to target soluble Aβ aggregates.
Collapse
Affiliation(s)
- Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Petibois C, Piccinini M, Guidi MC, Marcelli A. Facing the challenge of biosample imaging by FTIR with a synchrotron radiation source. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:1-11. [PMID: 20029106 DOI: 10.1107/s0909049509046056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 11/02/2009] [Indexed: 05/28/2023]
Abstract
Fourier-transform infrared (FTIR) synchrotron radiation (SR) microspectroscopy is a powerful molecular probe of biological samples at cellular resolution (<10 microm). As the brilliance of SR is 100-1000 times higher than that of a conventional Globar source, FTIR microscopes are now available in almost all advanced SR facilities around the world. However, in spite of this superior performance, the expected advances in IR SR microscopy have not yet been realised, particularly with regard to bio-analytical studies of single cells and soft tissues. In recent decades solid-state array detectors have revolutionized the fields of molecular spectroscopy and chemical imaging, and now new IR focal plane array detectors implemented at ultra-bright SR facilities will extend the performance and overcome the existing limitations, possibly allowing IR SR instrumentation to achieve the highest sensitivity and resolution of molecular imaging. The impact of IR imaging on large tissue area and the complexity of the analysis are discussed. In view of the high brilliance of SR sources, a comparison of published microscope images is given. Finally, it is briefly outlined how an optimized combination of IR instrumentation and SR optical systems could reach the expected advantages of a SR-based FTIR imaging system.
Collapse
Affiliation(s)
- Cyril Petibois
- Université de Bordeaux 2, CNRS UMR 5248 CBMN, B8 Avenue des facultés, F-33405 Talence Cedex, France.
| | | | | | | |
Collapse
|
23
|
Doglia SM, Ami D, Natalello A, Gatti-Lafranconi P, Lotti M. Fourier transform infrared spectroscopy analysis of the conformational quality of recombinant proteins within inclusion bodies. Biotechnol J 2008; 3:193-201. [PMID: 18213662 DOI: 10.1002/biot.200700238] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The solubility of recombinant proteins produced in bacterial cells is considered a key issue in biotechnology as most overexpressed polypeptides undergo aggregation in inclusion bodies, from which they have to be recovered by solubilization and refolding procedures. Physiological and molecular strategies have been implemented to revert or at least to control aggregation but they often meet only partial success and have to be optimized case by case. Recent studies have shown that proteins embedded in inclusion bodies may retain residual structure and biological function and question the former axiom that solubility and activity are necessarily coupled. This allows for a switch in the goals from obtaining soluble products to controlling the conformational quality of aggregated proteins. Central to this approach is the availability of analytical methods to monitor protein structure within inclusion bodies. We describe here the use of Fourier transform infrared spectroscopy for the structural analysis of inclusion bodies both purified from cells and in vivo. Examples are reported concerning the study of kinetics of aggregation and structure of aggregates as a function of expression levels, temperature and co-expression of chaperones.
Collapse
Affiliation(s)
- Silvia Maria Doglia
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italia
| | | | | | | | | |
Collapse
|
24
|
Ami D, Neri T, Natalello A, Mereghetti P, Doglia SM, Zanoni M, Zuccotti M, Garagna S, Redi CA. Embryonic stem cell differentiation studied by FT-IR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:98-106. [DOI: 10.1016/j.bbamcr.2007.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/28/2022]
|