1
|
Pisa R, Rapoport TA. Disulfide-crosslink analysis of the ubiquitin ligase Hrd1 complex during endoplasmic reticulum-associated protein degradation. J Biol Chem 2022; 298:102373. [PMID: 35970394 PMCID: PMC9478403 DOI: 10.1016/j.jbc.2022.102373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and degraded by the ubiquitin-proteasome system, a pathway termed luminal ER-associated protein degradation. Retrotranslocation is mediated by a conserved protein complex, consisting of the ubiquitin ligase Hrd1 and four associated proteins (Der1, Usa1, Hrd3, and Yos9). Photocrosslinking experiments provided preliminary evidence for the polypeptide path through the membrane but did not reveal specific interactions between amino acids in the substrate and Hrd1 complex. Here, we have used site-specific disulfide crosslinking to map the interactions of a glycosylated model substrate with the Hrd1 complex in live S. cerevisiae cells. Together with available electron cryo-microscopy structures, the results show that the substrate interacts on the luminal side with both a groove in Hrd3 and the lectin domain of Yos9 and inserts a loop into the membrane, with one side of the loop interacting with the lateral gate of Der1 and the other with the lateral gate of Hrd1. Our disulfide crosslinking experiments also show that two Hrd1 molecules can interact through their lateral gates and that Hrd1 autoubiquitination is required for the disassembly of these Hrd1 dimers. Taken together, these data define the path of a polypeptide through the ER membrane and suggest that autoubiquitination of inactive Hrd1 dimers is required to generate active Hrd1 monomers.
Collapse
Affiliation(s)
- Rudolf Pisa
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Piirainen MA, Frey AD. The Impact of Glycoengineering on the Endoplasmic Reticulum Quality Control System in Yeasts. Front Mol Biosci 2022; 9:910709. [PMID: 35720120 PMCID: PMC9201249 DOI: 10.3389/fmolb.2022.910709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Yeasts are widely used and established production hosts for biopharmaceuticals. Despite of tremendous advances on creating human-type N-glycosylation, N-glycosylated biopharmaceuticals manufactured with yeasts are missing on the market. The N-linked glycans fulfill several purposes. They are essential for the properties of the final protein product for example modulating half-lives or interactions with cellular components. Still, while the protein is being formed in the endoplasmic reticulum, specific glycan intermediates play crucial roles in the folding of or disposal of proteins which failed to fold. Despite of this intricate interplay between glycan intermediates and the cellular machinery, many of the glycoengineering approaches are based on modifications of the N-glycan processing steps in the endoplasmic reticulum (ER). These N-glycans deviate from the canonical structures required for interactions with the lectins of the ER quality control system. In this review we provide a concise overview on the N-glycan biosynthesis, glycan-dependent protein folding and quality control systems and the wide array glycoengineering approaches. Furthermore, we discuss how the current glycoengineering approaches partially or fully by-pass glycan-dependent protein folding mechanisms or create structures that mimic the glycan epitope required for ER associated protein degradation.
Collapse
Affiliation(s)
- Mari A. Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D. Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Kemistintie 1, Aalto University, Otakaari, Finland
- *Correspondence: Alexander D. Frey,
| |
Collapse
|
3
|
Fregno I, Fasana E, Soldà T, Galli C, Molinari M. N-glycan processing selects ERAD-resistant misfolded proteins for ER-to-lysosome-associated degradation. EMBO J 2021; 40:e107240. [PMID: 34152647 PMCID: PMC8327951 DOI: 10.15252/embj.2020107240] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Efficient degradation of by‐products of protein biogenesis maintains cellular fitness. Strikingly, the major biosynthetic compartment in eukaryotic cells, the endoplasmic reticulum (ER), lacks degradative machineries. Misfolded proteins in the ER are translocated to the cytosol for proteasomal degradation via ER‐associated degradation (ERAD). Alternatively, they are segregated in ER subdomains that are shed from the biosynthetic compartment and are delivered to endolysosomes under control of ER‐phagy receptors for ER‐to‐lysosome‐associated degradation (ERLAD). Demannosylation of N‐linked oligosaccharides targets terminally misfolded proteins for ERAD. How misfolded proteins are eventually marked for ERLAD is not known. Here, we show for ATZ and mutant Pro‐collagen that cycles of de‐/re‐glucosylation of selected N‐glycans and persistent association with Calnexin (CNX) are required and sufficient to mark ERAD‐resistant misfolded proteins for FAM134B‐driven lysosomal delivery. In summary, we show that mannose and glucose processing of N‐glycans are triggering events that target misfolded proteins in the ER to proteasomal (ERAD) and lysosomal (ERLAD) clearance, respectively, regulating protein quality control in eukaryotic cells.
Collapse
Affiliation(s)
- Ilaria Fregno
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Elisa Fasana
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Tatiana Soldà
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Carmela Galli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
5
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
6
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
7
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
8
|
Zhang J, Wu J, Liu L, Li J. The Crucial Role of Demannosylating Asparagine-Linked Glycans in ERADicating Misfolded Glycoproteins in the Endoplasmic Reticulum. FRONTIERS IN PLANT SCIENCE 2020; 11:625033. [PMID: 33510762 PMCID: PMC7835635 DOI: 10.3389/fpls.2020.625033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Most membrane and secreted proteins are glycosylated on certain asparagine (N) residues in the endoplasmic reticulum (ER), which is crucial for their correct folding and function. Protein folding is a fundamentally inefficient and error-prone process that can be easily interfered by genetic mutations, stochastic cellular events, and environmental stresses. Because misfolded proteins not only lead to functional deficiency but also produce gain-of-function cellular toxicity, eukaryotic organisms have evolved highly conserved ER-mediated protein quality control (ERQC) mechanisms to monitor protein folding, retain and repair incompletely folded or misfolded proteins, or remove terminally misfolded proteins via a unique ER-associated degradation (ERAD) mechanism. A crucial event that terminates futile refolding attempts of a misfolded glycoprotein and diverts it into the ERAD pathway is executed by removal of certain terminal α1,2-mannose (Man) residues of their N-glycans. Earlier studies were centered around an ER-type α1,2-mannosidase that specifically cleaves the terminal α1,2Man residue from the B-branch of the three-branched N-linked Man9GlcNAc2 (GlcNAc for N-acetylglucosamine) glycan, but recent investigations revealed that the signal that marks a terminally misfolded glycoprotein for ERAD is an N-glycan with an exposed α1,6Man residue generated by members of a unique folding-sensitive α1,2-mannosidase family known as ER-degradation enhancing α-mannosidase-like proteins (EDEMs). This review provides a historical recount of major discoveries that led to our current understanding on the role of demannosylating N-glycans in sentencing irreparable misfolded glycoproteins into ERAD. It also discusses conserved and distinct features of the demannosylation processes of the ERAD systems of yeast, mammals, and plants.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
9
|
Peterson BG, Glaser ML, Rapoport TA, Baldridge RD. Cycles of autoubiquitination and deubiquitination regulate the ERAD ubiquitin ligase Hrd1. eLife 2019; 8:50903. [PMID: 31713515 PMCID: PMC6914336 DOI: 10.7554/elife.50903] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Misfolded proteins in the lumen of the endoplasmic reticulum (ER) are retrotranslocated into the cytosol and polyubiquitinated before being degraded by the proteasome. The multi-spanning ubiquitin ligase Hrd1 forms the retrotranslocation channel and associates with three other membrane proteins (Hrd3, Usa1, Der1) of poorly defined function. The Hrd1 channel is gated by autoubiquitination, but how Hrd1 escapes degradation by the proteasome and returns to its inactive ground state is unknown. Here, we show that autoubiquitination of Hrd1 is counteracted by Ubp1, a deubiquitinating enzyme that requires its N-terminal transmembrane segment for activity towards Hrd1. The Hrd1 partner Hrd3 serves as a brake for autoubiquitination, while Usa1 attenuates Ubp1’s deubiquitination activity through an inhibitory effect of its UBL domain. These results lead to a model in which the Hrd1 channel is regulated by cycles of autoubiquitination and deubiquitination, reactions that are modulated by the other components of the Hrd1 complex. Just like factories make mistakes when producing products, cells make mistakes when producing proteins. In cells, a compartment called the endoplasmic reticulum is where about one third of all proteins are produced, and where new proteins undergo quality control. Damaged or misfolded proteins are removed by a process called endoplasmic reticulum-associated degradation (ERAD for short), because if damaged proteins accumulate, cells become stressed. One type of ERAD is driven by a protein called Hrd1. Together with other components, Hrd1 labels damaged proteins with a ubiquitin tag that acts as a flag for degradation. Hrd1 has a paradoxical feature, however. To be active, Hrd1 tags itself with ubiquitin but this also makes it more prone to becoming degraded. How does Hrd1 remain active while avoiding its own degradation? To address this question, Peterson et al. forced budding yeast cells to produce high levels of 23 different enzymes that remove ubiquitin tags. One of these enzymes, called Ubp1, was able remove the ubiquitin tag from Hrd1, though it had not been seen in the ERAD pathway before. Further experiments also showed that Ubp1 was able to regulate Hrd1 activity, making Ubp1 a regulator of Hrd1 dependent protein quality control. Without protein quality control, damaged proteins can contribute to various diseases. ERAD is a common quality control system for proteins, present in many different species, ranging from yeast to animals. Therefore, understanding how ERAD works in budding yeast may also increase understanding of how human cells deal with damaged proteins.
Collapse
Affiliation(s)
- Brian G Peterson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Morgan L Glaser
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| | - Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
10
|
Zhao W, Mengal K, Yuan M, Quansah E, Li P, Wu S, Xu C, Yi C, Cai X. Comparative RNA-Seq Analysis of Differentially Expressed Genes in the Epididymides of Yak and Cattleyak. Curr Genomics 2019; 20:293-305. [PMID: 32030088 PMCID: PMC6983960 DOI: 10.2174/1389202920666190809092819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023] Open
Abstract
Background Cattleyak are the Fl hybrids between (♀) yak (Bos grunniens) and (♂) cattle (Bos taurus). Cattleyak exhibit higher capability in adaptability to a harsh environment and display much higher performances in production than the yak and cattle. The cattleyak, however, are females fertile but males sterile. All previous studies greatly focused on testes tissues to study the mechanism of male infer-tility in cattleyak. However, so far, no transcriptomic study has been conducted on the epididymides of yak and cattleyak. Objective Our objective was to perform comparative transcriptome analysis between the epididymides of yak and cattleyak and predict the etiology of male infertility in cattleyak.Methods: We performed comparative transcriptome profiles analysis by mRNA sequencing in the epidi-dymides of yak and cattleyak. Results In total 3008 differentially expressed genes (DEGs) were identified in cattleyak, out of which 1645 DEGs were up-regulated and 1363 DEGs were down-regulated. Thirteen DEGs were validated by quantitative real-time PCR. DEGs included certain genes that were associated with spermatozoal matura-tion, motility, male fertility, water and ion channels, and beta-defensins. LCN9, SPINT4, CES5A, CD52, CST11, SERPINA1, CTSK, FABP4, CCR5, GRIA2, ENTPD3, LOC523530 and DEFB129, DEFB128, DEFB127, DEFB126, DEFB124, DEFB122A, DEFB122, DEFB119 were all downregu-lated, whereas NRIP1 and TMEM212 among top 30 DEGs were upregulated. Furthermore, protein processing in endoplasmic reticulum pathway was ranked at top-listed three significantly enriched KEGG pathways that as a consequence of abnormal expression of ER-associated genes in the entire ER protein processing pathway might have been disrupted in male cattleyak which resulted in the down-regulation of several important genes. All the DEGs enriched in this pathway were downregulated ex-cept NEF. Conclusion Taken together, our findings revealed that there were marked differences in the epididymal transcriptomic profiles of yak and cattleyak. The DEGs were involved in spermatozoal maturation, mo-tility, male fertility, water and ion channels, and beta-defensins. Abnormal expression of ER-associated genes in the entire ER protein processing pathway may have disrupted protein processing pathway in male cattleyak resulting in the downregulation of several important genes involved in sperm maturation, motility and defense.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Kifayatullah Mengal
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Eugene Quansah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Pengcheng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Xin Cai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| |
Collapse
|
11
|
Abstract
Identification and degradation of misfolded proteins by the ubiquitin-proteasome system (UPS) is crucial for maintaining proteostasis, but only a handful of UPS components have been linked to the recognition of specific substrates. Studies in Saccharomyces cerevisiae using systematic perturbation of nonessential genes have uncovered UPS components that recognize and ubiquitylate model substrates of the UPS; however, similar analyses in metazoans have been limited. In this chapter, we describe methods for using CRISPR/Cas9 technology combined with genome-wide high complexity single guide (sgRNA) libraries and a transcriptional shutoff strategy for phenotypic selection based on kinetic measurements of protein turnover to identify the genes required to degrade model clients of the mammalian ER-associated degradation system. We also discuss considerations for screen design, execution, and interpretation.
Collapse
Affiliation(s)
- Dara E Leto
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
12
|
Gallo GL, Valko A, Aramburu SI, Etchegaray E, Völker C, Parodi AJ, D'Alessio C. Abrogation of glucosidase I-mediated glycoprotein deglucosylation results in a sick phenotype in fission yeasts: Model for the human MOGS-CDG disorder. J Biol Chem 2018; 293:19957-19973. [PMID: 30389790 DOI: 10.1074/jbc.ra118.004844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Glucosidase I (GI) removes the outermost glucose from protein-linked Glc3Man9GlcNAc2 (G3M9) in the endoplasmic reticulum (ER). Individuals with congenital disorders of glycosylation MOGS-CDG bear mutations in the GI-encoding gene (gls1). Although GI absence has been reported to produce lethality in Schizosaccharomyces pombe yeasts, here we obtained two viable Δgls1 mutants, one with a very sick but not lethal phenotype (Δgls1-S) and the other with a healthier one (Δgls1-H). The sick strain displayed only G3M9 as an ER protein-linked oligosaccharide, whereas the healthier strain had both G3M9 and Man9GlcNAc2 The lipid-linked oligosaccharide patterns of the two strains revealed that the most abundantly formed glycans were G3M9 in Δgls1-S and Glc2Man9GlcNAc2 in Δgls1-H, suggesting reduced Alg10p glucosyltransferase activity in the Δgls1-H strain. A mutation in the alg10 + gene was indeed observed in this strain. Our results indicated that abrogated G3M9 deglucosylation was responsible for the severe defects observed in Δgls1-S cells. Further studies disclosed that the defects could not be ascribed to disruption of glycoprotein entrance into calnexin-folding cycles, inhibition of the oligosaccharyltransferase by transfer reaction products, or reduced proteasomal degradation of misfolded glycoproteins. Lack of triglucosylated glycoprotein deglucosylation neither significantly prevented glycan elongation in the Golgi nor modified the overall cell wall monosaccharide composition. Nevertheless, it resulted in a distorted cell wall and in the absence of underlying ER membranes. Furthermore, Golgi expression of human endomannosidase partially restored normal growth in Δgls1-S cells. We propose that accumulation of G3M9-bearing glycoproteins is toxic and at least partially responsible for defects observed in MOGS-CDG.
Collapse
Affiliation(s)
- Giovanna L Gallo
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Ayelén Valko
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Sofía I Aramburu
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Emiliana Etchegaray
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Christof Völker
- the Institute of Biochemistry and Molecular Biology Medical Faculty, University of Bonn, 53115 Bonn, Germany, and
| | - Armando J Parodi
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Cecilia D'Alessio
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine,; the Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentine.
| |
Collapse
|
13
|
van der Goot AT, Pearce MMP, Leto DE, Shaler TA, Kopito RR. Redundant and Antagonistic Roles of XTP3B and OS9 in Decoding Glycan and Non-glycan Degrons in ER-Associated Degradation. Mol Cell 2018; 70:516-530.e6. [PMID: 29706535 DOI: 10.1016/j.molcel.2018.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Glycoproteins engaged in unproductive folding in the ER are marked for degradation by a signal generated by progressive demannosylation of substrate N-glycans that is decoded by ER lectins, but how the two lectins, OS9 and XTP3B, contribute to non-glycosylated protein triage is unknown. We generated cell lines with homozygous deletions of both lectins individually and in combination. We found that OS9 and XTP3B redundantly promote glycoprotein degradation and stabilize the SEL1L/HRD1 dislocon complex, that XTP3B profoundly inhibits the degradation of non-glycosylated proteins, and that OS9 antagonizes this inhibition. The relative expression of OS9 and XTP3B and the distribution of glycan and non-glycan degrons within the same protein contribute to the fidelity and processivity of glycoprotein triage and, therefore, determine the fates of newly synthesized proteins in the early secretory pathway.
Collapse
Affiliation(s)
| | | | - Dara E Leto
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
15
|
Vincenz-Donnelly L, Holthusen H, Körner R, Hansen EC, Presto J, Johansson J, Sawarkar R, Hartl FU, Hipp MS. High capacity of the endoplasmic reticulum to prevent secretion and aggregation of amyloidogenic proteins. EMBO J 2018; 37:337-350. [PMID: 29247078 PMCID: PMC5793802 DOI: 10.15252/embj.201695841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023] Open
Abstract
Protein aggregation is associated with neurodegeneration and various other pathologies. How specific cellular environments modulate the aggregation of disease proteins is not well understood. Here, we investigated how the endoplasmic reticulum (ER) quality control system handles β-sheet proteins that were designed de novo to form amyloid-like fibrils. While these proteins undergo toxic aggregation in the cytosol, we find that targeting them to the ER (ER-β) strongly reduces their toxicity. ER-β is retained within the ER in a soluble, polymeric state, despite reaching very high concentrations exceeding those of ER-resident molecular chaperones. ER-β is not removed by ER-associated degradation (ERAD) but interferes with ERAD of other proteins. These findings demonstrate a remarkable capacity of the ER to prevent the formation of insoluble β-aggregates and the secretion of potentially toxic protein species. Our results also suggest a generic mechanism by which proteins with exposed β-sheet structure in the ER interfere with proteostasis.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hauke Holthusen
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Erik C Hansen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jenny Presto
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Centre for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Centre for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
16
|
Slp1-Emp65: A Guardian Factor that Protects Folding Polypeptides from Promiscuous Degradation. Cell 2017; 171:346-357.e12. [DOI: 10.1016/j.cell.2017.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023]
|
17
|
Kampmeyer C, Nielsen SV, Clausen L, Stein A, Gerdes AM, Lindorff-Larsen K, Hartmann-Petersen R. Blocking protein quality control to counter hereditary cancers. Genes Chromosomes Cancer 2017; 56:823-831. [PMID: 28779490 DOI: 10.1002/gcc.22487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Inhibitors of molecular chaperones and the ubiquitin-proteasome system have already been clinically implemented to counter certain cancers, including multiple myeloma and mantle cell lymphoma. The efficacy of this treatment relies on genomic alterations in cancer cells causing a proteostatic imbalance, which makes them more dependent on protein quality control (PQC) mechanisms than normal cells. Accordingly, blocking PQC, e.g. by proteasome inhibitors, may cause a lethal proteotoxic crisis in cancer cells, while leaving normal cells unaffected. Evidence, however, suggests that the PQC system operates by following a better-safe-than-sorry principle and is thus prone to target proteins that are only slightly structurally perturbed, but still functional. Accordingly, implementing PQC inhibitors may also, through an entirely different mechanism, hold potential for other cancers. Several inherited cancer susceptibility syndromes, such as Lynch syndrome and von Hippel-Lindau disease, are caused by missense mutations in tumor suppressor genes, and in some cases, the resulting amino acid substitutions in the encoded proteins cause the cellular PQC system to target them for degradation, although they may still retain function. As a consequence of this over-meticulous PQC mechanism, the cell may end up with an insufficient amount of the abnormal, but functional, protein, which in turn leads to a loss-of-function phenotype and manifestation of the disease. Increasing the amounts of such proteins by stabilizing with chemical chaperones, or by targeting molecular chaperones or the ubiquitin-proteasome system, may thus avert or delay the disease onset. Here, we review the potential of targeting the PQC system in hereditary cancer susceptibility syndromes.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Sofie V Nielsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Lene Clausen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, DK-2100, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| |
Collapse
|
18
|
Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans 2017; 45:571-582. [PMID: 28408497 PMCID: PMC5390498 DOI: 10.1042/bst20160182] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
Many viruses require the host endoplasmic reticulum protein-folding machinery in order to correctly fold one or more of their glycoproteins. Iminosugars with glucose stereochemistry target the glucosidases which are key for entry into the glycoprotein folding cycle. Viral glycoproteins are thus prevented from interacting with the protein-folding machinery leading to misfolding and an antiviral effect against a wide range of different viral families. As iminosugars target host enzymes, they should be refractory to mutations in the virus. Iminosugars therefore have great potential for development as broad-spectrum antiviral therapeutics. We outline the mechanism giving rise to the antiviral activity of iminosugars, the current progress in the development of iminosugar antivirals and future prospects for this field.
Collapse
|
19
|
Ward BK, Rea SL, Magno AL, Pedersen B, Brown SJ, Mullin S, Arulpragasam A, Ingley E, Conigrave AD, Ratajczak T. The endoplasmic reticulum-associated protein, OS-9, behaves as a lectin in targeting the immature calcium-sensing receptor. J Cell Physiol 2017; 233:38-56. [PMID: 28419469 DOI: 10.1002/jcp.25957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/13/2017] [Indexed: 11/07/2022]
Abstract
The mechanisms responsible for the processing and quality control of the calcium-sensing receptor (CaSR) in the endoplasmic reticulum (ER) are largely unknown. In a yeast two-hybrid screen of the CaSR C-terminal tail (residues 865-1078), we identified osteosarcoma-9 (OS-9) protein as a binding partner. OS-9 is an ER-resident lectin that targets misfolded glycoproteins to the ER-associated degradation (ERAD) pathway through recognition of specific N-glycans by its mannose-6-phosphate receptor homology (MRH) domain. We show by confocal microscopy that the CaSR and OS-9 co-localize in the ER in COS-1 cells. In immunoprecipitation studies with co-expressed OS-9 and CaSR, OS-9 specifically bound the immature form of wild-type CaSR in the ER. OS-9 also bound the immature forms of a CaSR C-terminal deletion mutant and a C677A mutant that remains trapped in the ER, although binding to neither mutant was favored over wild-type receptor. OS-9 binding to immature CaSR required the MRH domain of OS-9 indicating that OS-9 acts as a lectin most likely to target misfolded CaSR to ERAD. Our results also identify two distinct binding interactions between OS-9 and the CaSR, one involving both C-terminal domains of the two proteins and the other involving both N-terminal domains. This suggests the possibility of more than one functional interaction between OS-9 and the CaSR. When we investigated the functional consequences of altered OS-9 expression, neither knockdown nor overexpression of OS-9 was found to have a significant effect on CaSR cell surface expression or CaSR-mediated ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Bryan K Ward
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sarah L Rea
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Aaron L Magno
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Bernadette Pedersen
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Shelby Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Ajanthy Arulpragasam
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Evan Ingley
- Cell Signalling Group, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Thomas Ratajczak
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Laboratory for Molecular Endocrinology, Harry Perkins Institute of Medical Research and the Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
20
|
Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 2016; 147:269-284. [DOI: 10.1007/s00418-016-1513-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 02/03/2023]
|
21
|
Characterization of protein quality control components via dual reporter-containing misfolded cytosolic model substrates. Anal Biochem 2016; 515:14-21. [PMID: 27670725 DOI: 10.1016/j.ab.2016.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 11/20/2022]
Abstract
Protein misfolding and protein aggregation are causes of severe diseases as neurodegenerative disorders, diabetes and cancer. Therefore, the cell has to constantly monitor the folding status of its proteome. Chaperones and components of the ubiquitin-proteasome system are key players in the cellular protein quality control process. In order to characterize components of the protein quality control system in a well-established model eukaryote - the yeast Saccharomyces cerevisiae - we established new cytosolic model substrates based on firefly luciferase and β-isopropylmalate dehydrogenase (Leu2). The use of these two different enzymes arranged in tandem as reporters enabled us to analyse the folding status and the degradation propensity of these new model substrates in yeast cells mutated in components of the cellular protein quality control system. The Hsp70 chaperone system known to be essential in the cellular protein quality control was chosen as a model for showing the high value of the luciferase-based model substrates in the characterization of components of the cytosolic protein quality control system in yeast.
Collapse
|
22
|
Amm I, Wolf DH. Molecular mass as a determinant for nuclear San1-dependent targeting of misfolded cytosolic proteins to proteasomal degradation. FEBS Lett 2016; 590:1765-75. [PMID: 27173001 DOI: 10.1002/1873-3468.12213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 11/08/2022]
Abstract
Most misfolded cytosolic proteins in the cell are eliminated by the ubiquitin-proteasome system. In yeast, polyubiquitination of misfolded cytosolic proteins is triggered mainly by the action of two ubiquitin ligases Ubr1, formerly discovered as recognition component of the N-end rule pathway, and the nuclear ubiquitin ligase San1. For San1-mediated targeting to proteasomal degradation, cytosolic proteins have to be imported into the nucleus. Selection of misfolded substrates for import into the nucleus had remained elusive. This study shows that an increasing molecular mass of substrates prevents nuclear San1-triggered proteasomal degradation but renders them susceptible to cytoplasmic Ubr1-triggered degradation.
Collapse
Affiliation(s)
- Ingo Amm
- Institut für Biochemie, Universität Stuttgart, Germany
| | - Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Germany
| |
Collapse
|
23
|
Seaayfan E, Defontaine N, Demaretz S, Zaarour N, Laghmani K. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway. J Biol Chem 2016. [PMID: 26721884 DOI: 10.1074/jbc.m115.702514.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome.
Collapse
Affiliation(s)
- Elie Seaayfan
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nadia Defontaine
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Sylvie Demaretz
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nancy Zaarour
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Kamel Laghmani
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| |
Collapse
|
24
|
Seaayfan E, Defontaine N, Demaretz S, Zaarour N, Laghmani K. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway. J Biol Chem 2015; 291:4487-502. [PMID: 26721884 DOI: 10.1074/jbc.m115.702514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Indexed: 01/25/2023] Open
Abstract
Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome.
Collapse
Affiliation(s)
- Elie Seaayfan
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nadia Defontaine
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Sylvie Demaretz
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Nancy Zaarour
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| | - Kamel Laghmani
- From INSERM, Centre de Recherche des Cordeliers, U1138, Paris 75006, France, CNRS, ERL8228, Paris 75006, France, Université Pierre et Marie Curie, Paris 75006, France, and Université Paris-Descartes, Paris 75005, France
| |
Collapse
|
25
|
Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 2015; 16:742-52. [PMID: 26465718 DOI: 10.1038/nrm4073] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane-bound and soluble proteins of the secretory pathway are commonly glycosylated in the endoplasmic reticulum. These adducts have many biological functions, including, notably, their contribution to the maturation of glycoproteins. N-linked glycans are of oligomeric structure, forming configurations that provide blueprints to precisely instruct the folding of protein substrates and the quality control systems that scrutinize it. O-linked mannoses are simpler in structure and were recently found to have distinct functions in protein quality control that do not require the complex structure of N-linked glycans. Together, recent studies reveal the breadth and sophistication of the roles of these glycan-directed modifications in protein biogenesis.
Collapse
Affiliation(s)
- Chengchao Xu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Duke University-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
26
|
Amm I, Norell D, Wolf DH. Absence of the Yeast Hsp31 Chaperones of the DJ-1 Superfamily Perturbs Cytoplasmic Protein Quality Control in Late Growth Phase. PLoS One 2015; 10:e0140363. [PMID: 26466368 PMCID: PMC4605529 DOI: 10.1371/journal.pone.0140363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/24/2015] [Indexed: 01/26/2023] Open
Abstract
The Saccharomyces cerevisiae heat shock proteins Hsp31, Hsp32, Hsp33 and Hsp34 belong to the DJ-1/ThiJ/PfpI superfamily which includes the human protein DJ-1 (PARK7) as the most prominent member. Mutations in the DJ-1 gene are directly linked to autosomal recessive, early-onset Parkinson's disease. DJ-1 acts as an oxidative stress-induced chaperone preventing aggregation and fibrillation of α-synuclein, a critical factor in the development of the disease. In vivo assays in Saccharomyces cerevisiae using the model substrate ΔssCPY*Leu2myc (ΔssCL*myc) as an aggregation-prone misfolded cytoplasmic protein revealed an influence of the Hsp31 chaperone family on the steady state level of this substrate. In contrast to the ubiquitin ligase of the N-end rule pathway Ubr1, which is known to be prominently involved in the degradation process of misfolded cytoplasmic proteins, the absence of the Hsp31 chaperone family does not impair the degradation of newly synthesized misfolded substrate. Also degradation of substrates with strong affinity to Ubr1 like those containing the type 1 N-degron arginine is not affected by the absence of the Hsp31 chaperone family. Epistasis analysis indicates that one function of the Hsp31 chaperone family resides in a pathway overlapping with the Ubr1-dependent degradation of misfolded cytoplasmic proteins. This pathway gains relevance in late growth phase under conditions of nutrient limitation. Additionally, the Hsp31 chaperones seem to be important for maintaining the cellular Ssa Hsp70 activity which is important for Ubr1-dependent degradation.
Collapse
Affiliation(s)
- Ingo Amm
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Derrick Norell
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Dieter H. Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| |
Collapse
|
27
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
28
|
Zhu Y, Xu H, Chen H, Xie J, Shi M, Shen B, Deng X, Liu C, Zhan X, Peng C. Proteomic analysis of solid pseudopapillary tumor of the pancreas reveals dysfunction of the endoplasmic reticulum protein processing pathway. Mol Cell Proteomics 2014; 13:2593-603. [PMID: 24997997 DOI: 10.1074/mcp.m114.038786] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Solid pseudopapillary tumor of the pancreas (SPTP) is a low-grade malignant tumor with a favorable prognosis after surgery. Many previous studies have focused on clinical features or pathological biomarkers of the disease, but a better understanding of the molecular mechanisms underlying SPTP may help guide future therapeutic strategies. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) technology integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins in SPTP specimens. A total of 1171 proteins with a threshold of a 1.5-fold change and a p value ≤ 0.05 between SPTP tissue and matched normal pancreas tissue were identified for bioinformatics analysis. Mass spectrometry results were then further confirmed by assessing six representative proteins (ACADL, EPHX2, MSI2, DKK4, JUP, and DAD1) in individual specimens with immunohistochemistry. Upon mapping of the differentially expressed proteins to the Kyoto Encyclopedia of Genes and Genomes pathways database, we found several new cell-adhesion molecules that could be used as pathologic biomarkers. Furthermore, we observed that many endoplasmic reticulum-associated proteins were altered, suggesting that endoplasmic reticulum stress may play an important role in SPTP tumorigenesis. Seven proteins (ERO1LB, TRIM1, GRP94, BIP, SEC61B, P4HB, and PDIA4) in this pathway were further validated by immunohistochemistry, and six of them (except SEC61B) coincided to the LC-MS/MS results. This first comprehensive analysis of the SPTP proteome confirms proteins that have been implicated in earlier reports and reveals novel candidates and pathways that could be investigated further for clinical applications.
Collapse
Affiliation(s)
- Yi Zhu
- From the ‡Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hong Xu
- §Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Chen
- From the ‡Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China;
| | - Junjie Xie
- §Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minmin Shi
- From the ‡Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Baiyong Shen
- From the ‡Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaxing Deng
- From the ‡Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chao Liu
- From the ‡Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xi Zhan
- From the ‡Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chenghong Peng
- From the ‡Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China;
| |
Collapse
|
29
|
Tang HY, Huang CH, Zhuang YH, Christianson JC, Chen X. EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog. PLoS One 2014; 9:e92164. [PMID: 24910992 PMCID: PMC4049591 DOI: 10.1371/journal.pone.0092164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/19/2014] [Indexed: 11/18/2022] Open
Abstract
Misfolded proteins of the endoplasmic reticulum (ER) are eliminated by the ER-associated degradation (ERAD) in eukaryotes. In S. cerevisiae, ER-resident lectins mediate substrate recognition through bipartite signals consisting of an unfolded local structure and the adjacent glycan. Trimming of the glycan is essential for the directional delivery of the substrates. Whether a similar recognition and delivery mechanism exists in mammalian cells is unknown. In this study, we systematically study the function and substrate specificity of known mammalian ER lectins, including EDEM1/2/3, OS-9 and XTP-3B using the recently identified ERAD substrate sonic hedgehog (SHH), a soluble protein carrying a single N-glycan, as well as its nonglycosylated mutant N278A. Efficient ERAD of N278A requires the core processing complex of HRD1, SEL1L and p97, similar to the glycosylated SHH. While EDEM2 was required for ERAD of both glycosylated and non-glycosylated SHHs, EDEM3 was only necessary for glycosylated SHH and EDEM1 was dispensable for both. Degradation of SHH and N278A also required OS-9, but not the related lectin XTP3-B. Robust interaction of both EDEM2 and OS-9 with a non-glycosylated SHH variant indicates that the misfolded polypeptide backbone, rather than a glycan signature, functions as the predominant signal for recognition for ERAD. Notably, SHH-N278A is the first nonglycosylated substrate to require EDEM2 for recognition and targeting for ERAD. EDEM2 also interacts with calnexin and SEL1L, suggesting a potential avenue by which misfolded glycoproteins may be shunted towards SEL1L and ERAD rather than being released into the secretory pathway. Thus, ER lectins participate in the recognition and delivery of misfolded ER substrates differently in mammals, with an underlying mechanism distinct from that of S. cerevisiae.
Collapse
Affiliation(s)
- Hsiang-Yun Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Chunan town, Miaoli, Taiwan, ROC
| | - Chih-Hsiang Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Chunan town, Miaoli, Taiwan, ROC
| | - Ya-Han Zhuang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Chunan town, Miaoli, Taiwan, ROC
| | - John C. Christianson
- Ludwig Institute for Cancer Research, University of Oxford, ORCRB, Headington, Oxford, United Kingdom
| | - Xin Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Chunan town, Miaoli, Taiwan, ROC
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
30
|
Nakatsukasa K, Kamura T, Brodsky JL. Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol 2014; 29:82-91. [PMID: 24867671 DOI: 10.1016/j.ceb.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a mechanism during which native and misfolded proteins are recognized and retrotranslocated across the ER membrane to the cytosol for degradation by the ubiquitin-proteasome system. Like other cellular pathways, the factors required for ERAD have been analyzed using both conventional genetic and biochemical approaches. More recently, however, an integrated top-down approach has identified a functional network that underlies the ERAD system. In turn, bottom-up reconstitution has become increasingly sophisticated and elucidated the molecular mechanisms underlying substrate recognition, ubiquitylation, retrotranslocation, and degradation. In addition, a live cell imaging technique and a site-specific in vivo photo-crosslinking approach have further dissected specific steps during ERAD. These technical developments have revealed an unexpected dynamicity of the membrane-associated ERAD complex. In this article, we will discuss how these technical developments have improved our understanding of the ERAD pathway and have led to new questions.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
31
|
|
32
|
Park S, Jang I, Zuber C, Lee Y, Cho JW, Matsuo I, Ito Y, Roth J. ERADication of EDEM1 occurs by selective autophagy and requires deglycosylation by cytoplasmic peptide N-glycanase. Histochem Cell Biol 2014; 142:153-69. [PMID: 24664425 DOI: 10.1007/s00418-014-1204-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2014] [Indexed: 11/30/2022]
Abstract
ER degradation-enhancing α-mannosidase-like 1 protein (EDEM1) is involved in the routing of misfolded glycoproteins for degradation in the cytoplasm. Previously, we reported that EDEM1 leaves the endoplasmic reticulum via non-COPII vesicles (Zuber et al. in Proc Natl Acad Sci USA 104:4407-4412, 2007) and becomes degraded by basal autophagy (Le Fourn et al. in Cell Mol Life Sci 66:1434-1445, 2009). However, it is unknown which type of autophagy is involved. Likewise, how EDEM1 is targeted to autophagosomes remains elusive. We now show that EDEM1 is degraded by selective autophagy. It colocalizes with the selective autophagy cargo receptors p62/SQSTM1, neighbor of BRCA1 gene 1 (NBR1) and autophagy-linked FYVE (Alfy) protein, and becomes engulfed by autophagic isolation membranes. The interaction with p62/SQSTM1 and NBR1 is required for routing of EDEM1 to autophagosomes since it can be blocked by short inhibitory RNA knockdown of the cargo receptors. Furthermore, p62/SQSTM1 interacts only with deglycosylated EDEM1 that is also ubiquitinated. The deglycosylation of EDEM1 occurs by the cytosolic peptide N-glycanase and is a prerequisite for interaction and aggregate formation with p62/SQSTM1 as demonstrated by the effect of peptide N-glycanase inhibitors on the formation of protein aggregates. Conversely, aggregation of p62/SQSTM1 and EDEM1 occurs independent of cytoplasmic histone deacetylase. These data provide novel insight into the mechanism of autophagic degradation of the ER-associated protein degradation (ERAD) component EDEM1 and disclose hitherto unknown parallels with the clearance of cytoplasmic aggregates of misfolded proteins by selective autophagy.
Collapse
Affiliation(s)
- Sujin Park
- WCU Program, Department of Integrated OMICS for Biomedical Science, Yonsei University Graduate School, Seoul, 120-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
34
|
Fujimori T, Kamiya Y, Nagata K, Kato K, Hosokawa N. Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-associated degradation of a misfolded α1-antitrypsin variant. FEBS J 2013; 280:1563-75. [DOI: 10.1111/febs.12157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/21/2012] [Accepted: 01/22/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Tsutomu Fujimori
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences; Kyoto University; Japan
| | | | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences; Kyoto Sangyo University; Japan
| | | | - Nobuko Hosokawa
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences; Kyoto University; Japan
| |
Collapse
|
35
|
Thibault G, Ng DTW. The endoplasmic reticulum-associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol 2012; 4:4/12/a013193. [PMID: 23209158 DOI: 10.1101/cshperspect.a013193] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast.
Collapse
Affiliation(s)
- Guillaume Thibault
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | |
Collapse
|
36
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
37
|
Rubenstein EM, Kreft SG, Greenblatt W, Swanson R, Hochstrasser M. Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. ACTA ACUST UNITED AC 2012; 197:761-73. [PMID: 22689655 PMCID: PMC3373407 DOI: 10.1083/jcb.201203061] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hrd1 ubiquitin ligase plays a role in quality control of two substrates associated with the Sec61 translocon. Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.
Collapse
Affiliation(s)
- Eric M Rubenstein
- Deptartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
38
|
Use of CPY and its derivatives to study protein quality control in various cell compartments. Methods Mol Biol 2012; 832:489-504. [PMID: 22350908 DOI: 10.1007/978-1-61779-474-2_35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mutated derivatives of carboxypeptidase yscY (CPY) are potent substrates to study protein quality control and protein degradation in different cell compartments in yeast. Depending on the subcellular compartment of interest, the design of the model substrate used has to be adapted. Here, we describe the derivatives of CPY used in genetic screens based on a sensitive growth test in order to identify new components of the protein quality control systems in different degradation pathways.
Collapse
|
39
|
Fredrickson EK, Gardner RG. Selective destruction of abnormal proteins by ubiquitin-mediated protein quality control degradation. Semin Cell Dev Biol 2012; 23:530-7. [PMID: 22245831 DOI: 10.1016/j.semcdb.2011.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/30/2022]
Abstract
Misfolded proteins are continuously produced in the cell and present an escalating detriment to cellular physiology if not managed effectively. As such, all organisms have evolved mechanisms to address misfolded proteins. One primary way eukaryotic cells handle the complication of misfolded proteins is by destroying them through the ubiquitin-proteasome system. To do this, eukaryotes possess specialized ubiquitin-protein ligases that have the capacity to recognize misfolded proteins over normally folded proteins. The strategies used by these Protein Quality Control (PQC) ligases to target the wide variety of misfolded proteins in the cell will likely be different than those used by ubiquitin-protein ligases that function in regulated degradation to target normally folded proteins. In this review, we highlight what is known about how misfolded proteins are recognized by PQC ubiquitin-protein ligases.
Collapse
Affiliation(s)
- Eric K Fredrickson
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
40
|
N-glycans are not required for the efficient degradation of the mutant Saccharomyces cerevisiae CPY* in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2011; 93:1609-18. [PMID: 22083275 DOI: 10.1007/s00253-011-3662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 10/03/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
In eukaryotic cells, aberrant proteins generated in the endoplasmic reticulum (ER) are degraded by the ER-associated degradation (ERAD) pathway. Here, we report on the ERAD pathway of the fission yeast Schizosaccharomyces pombe. We constructed and expressed Saccharomyces cerevisiae wild-type CPY (ScCPY) and CPY-G255R mutant (ScCPY*) in S. pombe. While ScCPY was glycosylated and efficiently transported to the vacuoles in S. pombe, ScCPY* was retained in the ER and was not processed to the matured form in these cells. Cycloheximide chase experiments revealed that ScCPY* was rapidly degraded in S. pombe, and its degradation depended on Hrd1p and Ubc7p homologs. We also found that Mnl1p and Yos9p, proteins that are essential for ERAD in S. cerevisiae, were not required for ScCPY* degradation in S. pombe. Moreover, the null-glycosylation mutant of ScCPY, CPY*0000, was rapidly degraded by the ERAD pathway. These results suggested that N-linked oligosaccharides are not important for the recognition of luminal proteins for ERAD in S. pombe cells.
Collapse
|
41
|
Martinez Benitez E, Stolz A, Becher A, Wolf DH. Mnl2, a novel component of the ER associated protein degradation pathway. Biochem Biophys Res Commun 2011; 414:528-32. [DOI: 10.1016/j.bbrc.2011.09.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/20/2011] [Indexed: 11/26/2022]
|
42
|
Benitez EM, Stolz A, Wolf DH. Yos9, a control protein for misfolded glycosylated and non-glycosylated proteins in ERAD. FEBS Lett 2011; 585:3015-9. [PMID: 21871892 DOI: 10.1016/j.febslet.2011.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/08/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022]
Abstract
The endoplasmic reticulum (ER) is responsible for folding and delivery of secretory proteins to their site of action. One major modification proteins undergo in this organelle is N-glycosylation. Proteins that cannot fold properly will be directed to a process known as endoplasmic reticulum associated degradation (ERAD). Processing of N-glycans generates a signal for ERAD. The lectin Yos9 recognizes the N-glycan signal of misfolded proteins and acts as a gatekeeper for the delivery of these substrates to the cytoplasm for degradation. Presence of Yos9 accelerates degradation of the glycosylated model ERAD substrate CPY∗. Here we show that Yos9 has also a control function in degradation of the unglycosylated ERAD substrate CPY∗0000. It decelerates its degradation rate.
Collapse
|
43
|
Fredrickson EK, Rosenbaum JC, Locke MN, Milac TI, Gardner RG. Exposed hydrophobicity is a key determinant of nuclear quality control degradation. Mol Biol Cell 2011; 22:2384-95. [PMID: 21551067 PMCID: PMC3128539 DOI: 10.1091/mbc.e11-03-0256] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein quality control (PQC) degradation protects the cell by preventing the toxic accumulation of misfolded proteins. In eukaryotes, PQC degradation is primarily achieved by ubiquitin ligases that attach ubiquitin to misfolded proteins for proteasome degradation. To function effectively, PQC ubiquitin ligases must distinguish misfolded proteins from their normal counterparts by recognizing an attribute of structural abnormality commonly shared among misfolded proteins. However, the nature of the structurally abnormal feature recognized by most PQC ubiquitin ligases is unknown. Here we demonstrate that the yeast nuclear PQC ubiquitin ligase San1 recognizes exposed hydrophobicity in its substrates. San1 recognition is triggered by exposure of as few as five contiguous hydrophobic residues, which defines the minimum window of hydrophobicity required for San1 targeting. We also find that the exposed hydrophobicity recognized by San1 can cause aggregation and cellular toxicity, underscoring the fundamental protective role for San1-mediated PQC degradation of misfolded nuclear proteins.
Collapse
Affiliation(s)
- Eric K Fredrickson
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
44
|
Ushioda R, Nagata K. The endoplasmic reticulum-associated degradation and disulfide reductase ERdj5. Methods Enzymol 2011; 490:235-58. [PMID: 21266254 DOI: 10.1016/b978-0-12-385114-7.00014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle where secretory or membrane proteins are correctly folded with the aid of various molecular chaperones and oxidoreductases. Only correctly folded and assembled proteins are enabled to reach their final destinations, which are called as ER quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the ERQC mechanisms for maintaining the ER homeostasis and facilitates the elimination of misfolded or malfolded proteins accumulated in the ER. ERAD is mainly consisting of three processes: recognition of misfolded proteins for degradation in the ER, retrotranslocation of (possibly) unfolded substrates from the ER to the cytosol through dislocation channel, and their degradation in the cytosol via ubiquitin-protesome system. After briefly mentioned on productive folding of nascent polypeptides in the ER, we here overview the above three processes in ERAD system by highlighting on novel ERAD factors such as EDEM and ERdj5 in mammals and yeasts.
Collapse
Affiliation(s)
- Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | |
Collapse
|
45
|
Bolte K, Gruenheit N, Felsner G, Sommer MS, Maier UG, Hempel F. Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. Bioessays 2011; 33:368-76. [PMID: 21425305 DOI: 10.1002/bies.201100007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
At first glance the three eukaryotic protein translocation machineries--the ER-associated degradation (ERAD) transport apparatus of the endoplasmic reticulum, the peroxisomal importomer and SELMA, the pre-protein translocator of complex plastids--appear quite different. However, mechanistic comparisons and phylogenetic analyses presented here suggest that all three translocation machineries share a common ancestral origin, which highlights the recycling of pre-existing components as an effective evolutionary driving force. Editor's suggested further reading in BioEssays ERAD ubiquitin ligases Abstract.
Collapse
Affiliation(s)
- Kathrin Bolte
- Laboratory for Cell Biology, Philipps-University of Marburg, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Protein dislocation from the ER. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:925-36. [DOI: 10.1016/j.bbamem.2010.06.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/21/2010] [Accepted: 06/25/2010] [Indexed: 11/20/2022]
|
47
|
Protein Quality Control, Retention, and Degradation at the Endoplasmic Reticulum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:197-280. [DOI: 10.1016/b978-0-12-386033-0.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW. Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 2010; 30:497-506. [PMID: 21340671 DOI: 10.1007/s10059-010-0159-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/11/2010] [Indexed: 11/27/2022] Open
Abstract
Quality control of protein folding represents a fundamental cellular activity. Early steps of protein N-glycosylation involving the removal of three glucose and some specific mannose residues in the endoplasmic reticulum have been recognized as being of importance for protein quality control. Specific oligosaccharide structures resulting from the oligosaccharide processing may represent a glycocode promoting productive protein folding, whereas others may represent glyco-codes for routing not correctly folded proteins for dislocation from the endoplasmic reticulum to the cytosol and subsequent degradation. Although quality control of protein folding is essential for the proper functioning of cells, it is also the basis for protein folding disorders since the recognition and elimination of non-native conformers can result either in loss-of-function or pathological-gain-of-function. The machinery for protein folding control represents a prime example of an intricate interactome present in a single organelle, the endoplasmic reticulum. Here, current views of mechanisms for the recognition and retention leading to productive protein folding or the eventual elimination of misfolded glycoproteins in yeast and mammalian cells are reviewed.
Collapse
Affiliation(s)
- Jürgen Roth
- Department of Integrated OMICs for Biomedical Sciences, WCU Program of Graduate School, Yonsei University, Seoul 120-749, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Structural Basis for Oligosaccharide Recognition of Misfolded Glycoproteins by OS-9 in ER-Associated Degradation. Mol Cell 2010; 40:905-16. [DOI: 10.1016/j.molcel.2010.11.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/24/2010] [Accepted: 09/24/2010] [Indexed: 11/21/2022]
|
50
|
Tsai YC, Weissman AM. The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer. Genes Cancer 2010; 1:764-778. [PMID: 21331300 DOI: 10.1177/1947601910383011] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is an essential organelle involved in many cellular functions including protein folding and secretion, lipid biosynthesis and calcium homeostasis. Proteins destined for the cell surface or for secretion are made in the ER, where they are folded and assembled into multi-subunit complexes. The ER plays a vital role in cellular protein quality control by extracting and degrading proteins that are not correctly folded or assembled into native complexes. This process, known as ER-associated degradation (ERAD), ensures that only properly folded and assembled proteins are transported to their final destinations. Besides its role in protein folding and transport in the secretory pathway, the ER regulates the biosynthesis of cholesterol and other membrane lipids. ERAD is an important means to ensure that levels of the responsible enzymes are appropriately maintained. The ER is also a major organelle for oxygen and nutrient sensing as cells adapt to their microenvironment. Stresses that disrupt ER function leads to accumulation of unfolded proteins in the ER, a condition known as ER stress. Cells adapt to ER stress by activating an integrated signal transduction pathway called the unfolded protein response (UPR) (1). The UPR represents a survival response by the cells to restore ER homeostasis. If ER stress persists, cells activate mechanisms that result in cell death. Chronic ER stress is increasingly being recognized as a factor in many human diseases such as diabetes, neurodegenerative disorders and cancer. In this review we discuss the roles of the UPR and ERAD in cancer and suggest directions for future research.
Collapse
Affiliation(s)
- Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling Center for Cancer Research National Cancer Institute - Frederick Frederick, Maryland
| | | |
Collapse
|